首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5521篇
  免费   228篇
  国内免费   52篇
测绘学   113篇
大气科学   438篇
地球物理   1424篇
地质学   1862篇
海洋学   553篇
天文学   835篇
综合类   19篇
自然地理   557篇
  2022年   26篇
  2021年   65篇
  2020年   76篇
  2019年   85篇
  2018年   111篇
  2017年   92篇
  2016年   153篇
  2015年   148篇
  2014年   161篇
  2013年   272篇
  2012年   171篇
  2011年   279篇
  2010年   205篇
  2009年   294篇
  2008年   236篇
  2007年   223篇
  2006年   223篇
  2005年   207篇
  2004年   190篇
  2003年   163篇
  2002年   166篇
  2001年   86篇
  2000年   110篇
  1999年   89篇
  1998年   91篇
  1997年   73篇
  1996年   71篇
  1995年   93篇
  1994年   89篇
  1993年   67篇
  1992年   68篇
  1991年   59篇
  1990年   74篇
  1989年   71篇
  1988年   65篇
  1987年   71篇
  1986年   67篇
  1985年   76篇
  1984年   98篇
  1983年   85篇
  1982年   74篇
  1981年   64篇
  1980年   75篇
  1979年   59篇
  1978年   62篇
  1977年   45篇
  1976年   58篇
  1975年   55篇
  1974年   45篇
  1973年   57篇
排序方式: 共有5801条查询结果,搜索用时 33 毫秒
141.
142.
143.
144.
Spectral simulation has gained application in building geologic models due to the advantage of better honoring the spatial continuity of petrophysical properties, such as reservoir porosity and shale volume. Distinct from sequential simulation methods, spectral simulation is a global algorithm in the sense that a global density spectrum is calculated once and the inverse Fourier transform is performed on the Fourier coefficient also only once to generate a simulation realization. The generated realizations honor the spatial continuity structure globally over the whole field instead of only within a search neighborhood, as with sequential simulation algorithms. However, the disadvantage of global spectral simulation is that it traditionally cannot account for the local information such as the local continuity trends, which are often observed in reservoirs and hence are important to be accounted for in geologic models. This disadvantage has limited wider application of spectral simulation in building geologic models. In this paper, we present ways of conditioning geologic models to the relevant local information. To account for the local continuity trends, we first scale different frequency components of the original model with local-amplitude spectrum ratios that are specific to the local trend. The sum of these scaled frequency components renders a new model that displays the desired local continuity trend. The implementation details of this new method are discussed and examples are provided to illustrate the algorithm.  相似文献   
145.
Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of hydro-ecological processes over watersheds at mesoscale (10–100 km2). Conventional soil surveys are not designed to provide the same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with both the lumped parameter approach and the distributed parameter approach.  相似文献   
146.
147.
The Gaia Hypothesis: Fact, Theory, and Wishful Thinking   总被引:4,自引:0,他引:4  
Organisms can greatly affect their environments, and the feedback coupling between organisms and their environments can shape the evolution of both. Beyond these generally accepted facts, the Gaia hypothesis advances three central propositions: (1) that biologically mediated feedbacks contribute to environmental homeostasis, (2) that they make the environment more suitable for life, and (3) that such feedbacks should arise by Darwinian natural selection. These three propositions do not fare well under close scrutiny. (1) Biologically mediated feedbacks are not intrinsically homeostatic. Many of the biological mechanisms that affect global climate are destabilizing, and it is likely that the net effect of biological feedbacks will be to amplify, not dampen, global warming. (2) Nor do biologically mediated feedbacks necessarily enhance the environment, although it will often appear as if this were the case, simply because natural selection will favor organisms that do well in their environments – which means doing wellunder the conditions that they and their co-occurring species have created. (3) Finally, Gaian feedbacks can evolve by natural selection, but so can anti-Gaian feedbacks. Daisyworld models evolve Gaian feedback because they assume that any trait that improves the environment will also give a reproductive advantage to its carriers (over other organisms that share the same environment). In the real world, by contrast, natural selection favors any trait that gives its carriers a reproductive advantage over its non-carriers, whether it improves or degrades the environment (and thereby benefits or hinders its carriers and non-carriers alike). Thus Gaian and anti-Gaian feedbacks are both likely to evolve.  相似文献   
148.
Controls on coal metamorphism can be complex. In this paper, we examine four Paleozoic coalfields: the western Kentucky portion of the Illinois Basin, the Pennsylvania anthracite fields, the South Wales Coalfield, and the Bowen Basin. An increase in temperature with depth of burial is certainly a factor in coal metamorphism. In many coalfields, however, including the coalfields reviewed here, it has become apparent that such a simple mechanism does not explain the coal rank patterns observed. The flow of hydrothermal fluids through the coals has been proposed as a cause of coal metamorphism. Evidence includes inverted rank gradients, elevated CFL as an indicator of brine fluids, isotopic evidence for hydrothermal fluids, and vein and cleat mineral assemblages. In any case, multiple hypotheses must often be evaluated in the examination of any coalfield since the simple paradigm of coal rank increases with a simple increase in temperature with increasing depth does not fit the evidence observed in many cases.  相似文献   
149.
The Gustav Group of the James Ross Basin, Antarctic Peninsula, forms part of a major Southern Hemisphere Cretaceous reference section. Palynological data, chiefly from dinoflagellate cysts, integrated with macrofaunal evidence and strontium isotope stratigraphy, indicate that the Gustav Group, which is approximately 2.6 km thick, is Aptian–Coniacian in age. Aptian–Coniacian palynofloras in the James Ross Basin closely resemble coeval associations from Australia and New Zealand, and Australian palynological zonation schemes are applicable to the Gustav Group. The lowermost units, the coeval Pedersen and Lagrelius Point formations, have both yielded early Aptian dinoflagellate cysts. Because the overlying Kotick Point Formation is of early to mid Albian age, the Aptian/Albian boundary is placed, questionably, at the Lagrelius Point Formation–Kotick Point Formation boundary on James Ross Island, and this transition may be unconformable. Although the Kotick Point Formation is largely early Albian on dinoflagellate cyst evidence, the uppermost part of the formation appears to be of mid Albian age. This differentiation of the early and mid Albian has refined the age of the formation, previously considered to be Aptian–Albian, based on macrofaunal evidence. The Whisky Bay Formation is of late Albian to latest Turonian age on dinoflagellate cyst evidence and this supports the macrofaunal ages. Late Albian palynofloras have been recorded from the Gin Cove, lower Tumbledown Cliffs, Bibby Point and the lower–middle Lewis Hill members. However, the Cenomanian age of the upper Tumbledown Cliffs and Rum Cove members, based on molluscan evidence, is not supported by the dinoflagellate cyst floras and further work is required on this succession. The uppermost part of the Whisky Bay Formation in north-west James Ross Island is of mid to late Turonian age and this is confirmed by strontium isotope stratigraphy. The uppermost unit, the Hidden Lake Formation, is Coniacian in age on both palaeontological and strontium isotope evidence. The uppermost part of the formation appears to be early Santonian based on dinoflagellate cysts, but strontium isotope stratigraphy constrains this as being no younger than late Coniacian. This refined palynostratigraphy greatly improves the potential of the James Ross Basin as a major Cretaceous Southern Hemisphere reference section.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号