首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5787篇
  免费   220篇
  国内免费   48篇
测绘学   112篇
大气科学   477篇
地球物理   1473篇
地质学   1920篇
海洋学   547篇
天文学   875篇
综合类   21篇
自然地理   630篇
  2022年   28篇
  2021年   66篇
  2020年   68篇
  2019年   79篇
  2018年   119篇
  2017年   94篇
  2016年   148篇
  2015年   147篇
  2014年   152篇
  2013年   272篇
  2012年   190篇
  2011年   279篇
  2010年   205篇
  2009年   281篇
  2008年   245篇
  2007年   229篇
  2006年   239篇
  2005年   206篇
  2004年   186篇
  2003年   169篇
  2002年   184篇
  2001年   95篇
  2000年   116篇
  1999年   96篇
  1998年   103篇
  1997年   78篇
  1996年   72篇
  1995年   101篇
  1994年   92篇
  1993年   79篇
  1992年   75篇
  1991年   55篇
  1990年   83篇
  1989年   70篇
  1988年   70篇
  1987年   74篇
  1986年   77篇
  1985年   88篇
  1984年   108篇
  1983年   92篇
  1982年   88篇
  1981年   65篇
  1980年   85篇
  1979年   69篇
  1978年   76篇
  1977年   52篇
  1976年   66篇
  1975年   57篇
  1974年   49篇
  1973年   63篇
排序方式: 共有6055条查询结果,搜索用时 78 毫秒
991.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   
992.
Knowledge about the stochastic nature of heterogeneity in subsurface hydraulic properties is critical for aquifer characterization and the corresponding prediction of groundwater flow and contaminant transport. Whereas the vertical correlation structure of the heterogeneity is often well constrained by borehole information, the lateral correlation structure is generally unknown because the spacing between boreholes is too large to allow for its meaningful inference. There is, however, evidence to suggest that information on the lateral correlation structure may be extracted from the correlation statistics of the subsurface reflectivity structure imaged by surface-based ground-penetrating radar measurements. To date, case studies involving this approach have been limited to 2D profiles acquired at a single antenna centre frequency in areas with limited complementary information. As a result, the practical reliability of this methodology has been difficult to assess. Here, we extend previous work to 3D and consider reflection ground-penetrating radar data acquired using two antenna centre frequencies at the extensively explored and well-constrained Boise Hydrogeophysical Research Site. We find that the results obtained using the two ground-penetrating radar frequencies are consistent with each other, as well as with information from a number of other studies at the Boise Hydrogeophysical Research Site. In addition, contrary to previous 2D work, our results indicate that the surface-based reflection ground-penetrating radar data are not only sensitive to the aspect ratio of the underlying heterogeneity, but also, albeit to a lesser extent, to the so-called Hurst number, which is a key parameter characterizing the local variability of the fine-scale structure.  相似文献   
993.
Permeable reactive barriers (PRBs), such as mulch biowalls, have been installed at numerous groundwater cleanup sites, and laboratory and field studies have demonstrated biotic and abiotic processes that degrade chlorinated volatile organic compounds (CVOCs) in groundwater passing through these engineered remedies. However, the longevity of mulch biowalls remains a fundamental research question. Soil and groundwater sampling at seven mulch biowalls at Altus Air Force Base (AFB) approximately 10 years after installation demonstrated the ongoing degradation of CVOCs. Trichloroethene was not detected in five of seven groundwater samples collected from the biowall despite upgradient detections above federal drinking water standards. Microbial sampling established the presence of key dechlorinating bacteria and the abundance of genes encoding specific enzymes for degradation, high methane concentrations, low sulfate concentrations, and negative oxidation-reduction potential, all indicative of highly reducing conditions within the biowalls and favorable conditions for CVOC destruction via microbial reductive dechlorination. High cellulose content (>79%) of the mulch, elevated total organic carbon (TOC) content in groundwater, and elevated potentially bioavailable organic carbon (PBOC) measurements in soil samples further supports an ongoing, long-lived source of carbon. These results demonstrate the ongoing and long-term efficacy of the mulch biowalls at Altus AFB. In addition, concentrations of bacteria, TOC, PBOC, and other geochemical parameters suggest a modest impact of the biowalls downgradient. The continued presence of CVOCs downgradient may be attributable to back diffusion from low-permeability shale. However, the biowalls continue to provide benefits by removing CVOCs in groundwater, thus reducing further CVOC loading to the downgradient, low-permeability strata.  相似文献   
994.
The horizontal reactive media treatment well (HRX Well®) uses directionally drilled horizontal wells filled with a treatment media to induce flow-focusing behavior created by the well-to-aquifer permeability contrast to passively capture proportionally large volumes of groundwater. Groundwater is treated in situ as it flows through the HRX Well and downgradient portions of the aquifer are cleaned via elution as these zones are flushed with clean water discharging from the HRX Well. The HRX Well concept is particularly well suited for sites where long-term mass discharge control is a primary performance objective. This concept is appropriate for recalcitrant and difficult-to-treat constituents, including chlorinated solvents, per- and polyfluoroalkyl substances (PFAS), 1,4-dioxane, and metals. A full-scale HRX Well was installed and operated to treat trichloroethene (TCE) with zero valent iron (ZVI). The model-predicted enhanced flow through the HRX Well (compared to the flow in and equivalent cross-sectional area orthogonal to flow in the natural formation before HRX Well installation) and treatment zone width was consistent with flows and widths estimated independently by point velocity probe (PVP) testing, HRX Well tracer testing, and observed treatment in downgradient monitoring wells. The actual average capture zone width was estimated to be between 45 and 69 feet. Total TCE mass discharge reduction was maintained through the duration of the performance monitoring period and exceeded 99.99% (%). Decreases in TCE concentrations were observed at all four downgradient monitoring wells within the treatment zone (ranging from 50 to 74% at day 436), and the first arrival of treated water was consistent with model predictions. The field demonstration confirmed the HRX Well technology is best suited for long-term mass discharge control, can be installed under active infrastructure, requires limited ongoing operation and maintenance, and has low life cycle energy and water requirements.  相似文献   
995.
996.
The International Ocean Discovery Program Expedition 350 drilled between two Izu rear‐arc seamount chains at Site U1437 and recovered the first complete succession of rear‐arc rocks. The drilling reached 1806.5 m below seafloor. In situ hyaloclastites, which had erupted before the rear‐arc seamounts came into existence at this site, were recovered in the deepest part of the hole (~15–16 Ma). Here it is found that the composition of the oldest rocks recovered does not have rear‐arc seamount chain geochemical signatures, but instead shows affinities with volcanic front or some of the extensional zone basalts between the present volcanic front and the rear‐arc seamount chains. It is suggested that following the opening of the Shikoku back‐arc Basin, Site U1437 was a volcanic front or a rifting zone just behind the volcanic front, and was followed at ~ 9 Ma by the start of rear‐arc seamount chains volcanism. This geochemical change records variations in the subduction components with time, which might have followed eastward moving of hot fingers in the mantle wedge and deepening of the subducting slab below Site U1437 after the cessation of Shikoku back‐arc Basin opening.  相似文献   
997.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a palaeo-storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period. © 2019 John Wiley & Sons, Ltd.  相似文献   
998.
Many landforms on Earth are profoundly influenced by biota. In particular, biota play a significant role in creating karst biogeomorphology, through biogenic CO2 accelerating calcite weathering. In this study, we explore the ecohydrologic feedback mechanisms that have created isolated depressional wetlands on exposed limestone bedrock in South Florida – Big Cypress National Preserve –as a case study for karst biogeomorphic processes giving rise to regularly patterned landscapes. Specifically, we are interested in: (1) whether cypress depressions on the landscape have reached (or will reach) equilibrium size; (2) if so, what feedback mechanisms stabilize the size of depressions; and (3) what distal interactions among depressions give rise to the even distribution of depressions in the landscape. We hypothesize three feedback mechanisms controlling the evolution of depressions and build a numerical model to evaluate the relative importance of each mechanism. We show that a soil cover feedback (i.e. a smaller fraction of CO2 reaches the bedrock surface for weathering as soil cover thickens) is the major feedback stabilizing depressions, followed by a biomass feedback (i.e. inhibited biomass growth with deepening standing water and extended inundation period as depressions expand in volume). Strong local positive feedback between the volume of depressions and rate of volume expansion and distal negative feedback between depressions competing for water likely lead to the regular patterning at the landscape scale. The individual depressions, however, are not yet in steady state but would be in ~0.2–0.4 million years. This represents the first study to demonstrate the decoupling of landscape-scale self-organization and the self-organization of its constituent agents. © 2018 John Wiley & Sons, Ltd.  相似文献   
999.
Monitored natural attenuation (MNA) is commonly used as a remedy for trichloroethene (TCE) in anaerobic groundwater; however, MNA has not been applied to TCE contamination in aerobic groundwater. Under aerobic conditions, bacteria initiate the degradation of many organic substances with oxygenase enzymes. Several of these enzymes are known to degrade TCE through a fortuitous reaction known as cometabolism. There are commercially available qPCR assays that can determine the number of gene copies of these enzymes. If the qPCR assay could be used to predict the first-order rate constant for cometabolism of TCE, the qPCR assay could be used to screen sites to determine whether MNA was a plausible remedy for TCE contamination. This study reevaluated data from water samples that were collected from 19 wells on five sites in Minnesota, New York, and Utah. Data had previously been published on the rate constant for cometabolism of TCE in the water samples as determined by a 14C-assay and the abundance of gene copies for five enzymes that cometabolize TCE as determined using a qPCR assay. The Michaelis-Menten (Haldane) kinetic parameters for cometabolism of TCE and the abundance of DNA for the five oxygenase enzymes were used to predict the rate constant for cometabolism of TCE. The predicted rate constants were evaluated and validated by comparing them to the rate constants derived from the 14C-assay. For predicted rate constants greater than 0.003 per year, the predicted rate constants agreed with the measured rate constants within a factor of three. The qPCR assay serves as a convenient screening tool to determine whether MNA is a plausible remedy for an aerobic plume of TCE.  相似文献   
1000.
As a topographic modelling technique, structure-from-motion (SfM) photogrammetry combines the utility of digital photogrammetry with a flexibility and ease of use derived from multi-view computer vision methods. In conjunction with the rapidly increasing availability of imagery, particularly from unmanned aerial vehicles, SfM photogrammetry represents a powerful tool for geomorphological research. However, to fully realize this potential, its application must be carefully underpinned by photogrammetric considerations, surveys should be reported in sufficient detail to be repeatable (if practical) and results appropriately assessed to understand fully the potential errors involved. To deliver these goals, robust survey and reporting must be supported through (i) using appropriate survey design, (ii) applying suitable statistics to identify systematic error (bias) and to estimate precision within results, and (iii) propagating uncertainty estimates into the final data products. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号