首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29103篇
  免费   341篇
  国内免费   963篇
测绘学   1507篇
大气科学   2351篇
地球物理   5712篇
地质学   13120篇
海洋学   1459篇
天文学   2377篇
综合类   2176篇
自然地理   1705篇
  2022年   24篇
  2021年   65篇
  2020年   63篇
  2019年   70篇
  2018年   4823篇
  2017年   4096篇
  2016年   2687篇
  2015年   363篇
  2014年   214篇
  2013年   261篇
  2012年   1133篇
  2011年   2931篇
  2010年   2175篇
  2009年   2533篇
  2008年   2073篇
  2007年   2529篇
  2006年   261篇
  2005年   370篇
  2004年   561篇
  2003年   553篇
  2002年   397篇
  2001年   121篇
  2000年   147篇
  1999年   96篇
  1998年   106篇
  1997年   63篇
  1996年   63篇
  1995年   87篇
  1994年   81篇
  1993年   62篇
  1992年   65篇
  1991年   51篇
  1990年   70篇
  1989年   62篇
  1988年   60篇
  1987年   64篇
  1986年   59篇
  1985年   69篇
  1984年   91篇
  1983年   70篇
  1982年   71篇
  1981年   79篇
  1980年   87篇
  1979年   55篇
  1978年   57篇
  1977年   40篇
  1976年   56篇
  1975年   53篇
  1974年   39篇
  1973年   52篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A Mercury orientation model including non-zero obliquity and librations   总被引:1,自引:0,他引:1  
Planetary orientation models describe the orientation of the spin axis and prime meridian of planets in inertial space as a function of time. The models are required for the planning and execution of Earth-based or space-based observational work, e.g. to compute viewing geometries and to tie observations to planetary coordinate systems. The current orientation model for Mercury is inadequate because it uses an obsolete spin orientation, neglects oscillations in the spin rate called longitude librations, and relies on a prime meridian that no longer reflects its intended dynamical significance. These effects result in positional errors on the surface of ~1.5 km in latitude and up to several km in longitude, about two orders of magnitude larger than the finest image resolution currently attainable. Here we present an updated orientation model which incorporates modern values of the spin orientation, includes a formulation for longitude librations, and restores the dynamical significance to the prime meridian. We also use modern values of the orbit normal, spin axis orientation, and precession rates to quantify an important relationship between the obliquity and moment of inertia differences.  相似文献   
82.
The formation of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) significantly contributes to the total uptake and storage of anthropogenic gases, such as CO2 and chlorofluorocarbons (CFCs), within the world's oceans. SAMW and AAIW formation rates in the South Pacific are quantified based on CFC-12 inventories using hydrographic data from WOCE, CLIVAR, and data collected in the austral winter of 2005. This study documents the first wintertime observations of CFC-11 and CFC-12 saturations with respect to the 2005 atmosphere in the formation region of the southeast Pacific for SAMW and AAIW. SAMW is 94% and 95% saturated for CFC-11 and CFC-12, respectively, and AAIW is 60% saturated for both CFC-11 and CFC-12. SAMW is defined from the Subantarctic Front to the equator between potential densities 26.80-27.06 kg m−3, and AAIW is defined from the Polar Front to 20°N between potential densities 27.06-27.40 kg m−3. CFC-12 inventories are 16.0×106 moles for SAMW and 8.7×106 moles for AAIW, corresponding to formation rates of 7.3±2.1 Sv for SAMW and 5.8±1.7 Sv for AAIW circulating within the South Pacific. Inter-ocean transports of SAMW from the South Pacific to the South Atlantic are estimated to be 4.4±0.6 Sv. Thus, the total formation of SAMW in the South Pacific is approximately 11.7±2.2 Sv. These formation rates represent the average formation rates over the major period of CFC input, from 1970 to 2005. The CFC-12 inventory maps provide direct evidence for two areas of formation of SAMW, one in the southeast Pacific and one in the central Pacific. Furthermore, eddies in the central Pacific containing high CFC concentrations may contribute to SAMW and to a lesser extent AAIW formation. These CFC-derived rates provide a baseline with which to compare past and future formation rates of SAMW and AAIW.  相似文献   
83.
For an optimal analysis of the H/V curve, it appears necessary to check the instrument signal to noise ratio in the studied frequency band, to ensure that the signal from the ground noise is well above the internal noise. We assess the reliability and accuracy of various digitizers, sensors and/or digitizer-sensor couples. Although this study is of general interest for any kind of seismological study, we emphasize the influence of equipment on H/V analysis results. To display the impact of the instrumental part on the H/V behavior, some series of tests have been carried out following a step-by-step procedure: first, the digitizers have been tested in the lab (sensitivity, internal noise...), then the three components sensors, still in the lab, and finally the usual user digitizers-sensors couple in lab and outdoors. In general, the digitizer characteristics, verified during this test, correspond well to the manufacturer specifications, however, depending on the digitizer, the quality of the digitized waveform can be very good to very poor, with variation from a channel to another channel (gain, time difference etc.). It appears very clearly that digitizers need a warming up time before the recording to avoid problems in the low-frequency range. Regarding the sensors, we recommend strongly to avoid the use of “classical” accelerometers (i.e., usual force balance technology). The majority of tested seismometers (broadband and short period, even 4.5 Hz) can be used without problems from 0.4 to 25 Hz. In all cases, the instrumentation should be checked first to verify that it works well for the defined study aim, but also to define its limit of use (frequency, sensitivity...).  相似文献   
84.
Compression wave velocityV p has been measured on 10 representative rock samples from the Early Mesozoic granulite and mafic-ultramafic cumulate xenoliths population from the Harqin area of the Inner Mongolia Autonomous Region (for short Inner Mongolia) as an aid to interpretingin-situ seismic velocity data and investigating velocity variation with depth in a mafic lower crust. The experiments have been carried out at constant confining pressures up to 1 000 MPa and temperatures ranging from 20 to around 1 300°C, using the ultrasonic transmission technique. After corrections for estimatedin situ crustal pressures and temperatures, elastic wave velocities range from 6.5 to 7.4 km·s?1, indicating that they are components of the Early Mesozoic crust-mantle transitional zone. Combining with previous experimental data, we have also reestablished the Early-Mesozoic continental compression velocity profile and compared it with those of the present and of the different tectonic environments in the world. The result shows that it is similar to the velocity pattern of the extensional tectonic area, providing new clues to the Mesozoic continental structure of the North China Craton.  相似文献   
85.
The time varying conditions in the near-Earth space environment that may affect space-borne or ground-based technological systems and may endanger human health or life are referred to as space weather. Space weather effects arise from the dynamic and highly variable conditions in the geospace environment starting from explosive events on the Sun (solar flares), Coronal Mass Ejections near the Sun in the interplanetary medium, and various energetic effects in the magnetosphere–ionosphere–atmosphere system. As the utilization of space has become part of our everyday lives, and as our lives have become increasingly dependent on technological systems vulnerable to the space weather influences, the understanding and prediction of hazards posed by these active solar events have grown in importance. In this paper, we review the processes of the Sun–Earth interactions, the dynamic conditions within the magnetosphere, and the predictability of space weather effects on radio waves, satellites and ground-based technological systems today.  相似文献   
86.
We show here that the Amalaoulaou complex, in the Pan-African belt of West Africa (Gourma, Mali), corresponds to the lower and middle sections of a Neoproterozoic intra-oceanic arc. This complex records a 90–130-Ma-long evolution of magmatic inputs and differentiation above a subducting oceanic slab. Early c. 793 Ma-old metagabbros crystallised at lower crustal or uppermost mantle depths (25–30 km) and have geochemical characteristic of high-alumina basalts extracted from a depleted mantle source slightly enriched by slab-derived sedimentary components ((La/Sm)N < 1; εNd: +5.4–6.2; 87Sr/86Sr: 0.7027–0.7029). In response to crustal thickening, these mafic rocks were recrystallised into garnet-granulites (850–1,000°C; 10–12 kbar) and subject to local dehydration–melting reactions, forming trondhjemititic leucosomes with garnet–clinopyroxene–rutile residues. Slightly after the granulitic event, the arc root was subject to strong HT shearing during partial exhumation (detachment faults/rifting or thrusting), coeval with the emplacement of spinel- and garnet-pyroxenite dykes crystallised from a high-Mg andesitic parental magma. Quartz and hornblende-gabbros (700–660 Ma) with composition typical of hydrous volcanic rocks from mature arcs ((La/Sm)N: 0.9–1.8; εNd: +4.6 to +5.2; 87Sr/86Sr: 0.7028–0.7031) were subsequently emplaced at mid-arc crust levels (~15 km). Trace element and isotopic data indicate that magmas tapped a depleted mantle source significantly more enriched in oceanic sedimentary components (0.2%). Exhumation occurred either in two stages (700–660 and 623 Ma) or in one stage (623 Ma) with a final exhumation of the arc root along cold P-T path (550°C, 6–9 kbar; epidote–amphibolite and greenschist facies conditions) during the main Pan-African collision event (620–580 Ma). The composition of magmas forming the Cryogenian Amalaoulaou arc and the processes leading to intra-arc differentiation are strikingly comparable to those observed in the deep section of exposed Mezosoic oceanic arcs, namely the Kohistan and Talkeetna complex. This evolution of the Amalaoulaou oceanic arc and its accretion towards the West African craton belong to the life and closure of the Pharusian Ocean that eventually led to the formation of the Greater Gondwana supercontinent, a similar story having occurred on the other side of the Sahara with the Mozambique Ocean.  相似文献   
87.
Complex flows in heterogeneous confined and unconfined aquifers is a phenomenon that continues to present difficulties in flow mapping and modelling in the field, laboratory, and through numerical simulations. It is often the case with complicated phenomena that transformative scaling and reduction of the problem through symmetry is of great efficacy in the formation of predictive models in both the laboratory and computational settings. A detailed a study of the application of a broad class of Lie scaling transformations on a set of equations representing the groundwater flows in heterogeneous confined and unconfined aquifers has produced a set of scaling relationships between the spatial variables, hydrologic variables, and parameters. The set of scaling transformations preserve the structure of the equations in the sense that the scaling transformations leave the initial‐boundary value system representing the invariant groundwater flows. This theoretical approach elucidates not only the scaling relationships but also the properties that hydrologic variables and parameters must satisfy in order for calling to be possible. Validation of the theory developed is carried out through a series of four numerical simulations using the USGS modflow ‐2005 software package. The results of these experiments demonstrate that the derived scaling transformations can effectively form predictive models of large‐scale phenomena at small scales with negligible error in many cases. Comments on the limitations of the approach and directions for future research are made in the closing sections. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
88.
Three-dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington rotations (CR 2054?–?2153) during 2007/03?–?2014/08 using the spherically symmetric method from polarized white-light observations with the inner coronagraph (COR1) onboard the twin Solar Terrestrial Relations Observatory (STEREO). These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a magnetohydrodynamics (MHD) model as well as using data from the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO)-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7?–?9 months. Using 14 CR (\(\approx13\)-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6?–?4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry: they are somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7?–?8 months. In addition, it is found that the radial distribution of the mean electron density for streamers at Cycle 24 maximum is only slightly larger (by \(\approx30\%\)) than at cycle minimum.  相似文献   
89.
The rationale behind recent calibrations of the Cepheid PL relation using the Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent conclusions regarding a possible change in slope of the PL relation for short-period and long-period Cepheids are tied to a pathological distribution of HST calibrators within the instability strip. A recalibration of the period-luminosity relation is obtained using Galactic Cepheids in open clusters and groups, the resulting relationship, described by log L/L =2.415(±0.035)+1.148(±0.044)log P, exhibiting only the moderate scatter expected from color spread within the instability strip. The relationship is confirmed by Cepheids with HST parallaxes, although without the need for Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos parallaxes, albeit with concerns about the cited precisions of the latter. A Wesenheit formulation of W V =−2.259(±0.083)−4.185(±0.103)log P for Galactic Cepheids is tested successfully using Cepheids in the inner regions of the galaxy NGC 4258, confirming the independent geometrical distance established for the galaxy from OH masers. Differences between the extinction properties of interstellar and extragalactic dust may yet play an important role in the further calibration of the Cepheid PL relation and its application to the extragalactic distance scale.  相似文献   
90.
On the afternoon of 3 July 2004 in Hyytiälä (Juupajoki, Finland), convective cells produced a strong downburst causing forest damage. The SMEAR II field station, situated near the damage site, enabled a unique micrometeorological analysis of a microburst with differences above and inside the canopy. At the time of the event, a squall line associated with a cold front was crossing Hyytiälä with a reflectivity maximum in the middle of the squall line. A bow echo, rear-inflow notch, and probable mesovortex were observed in radar data. The bow echo moved west-north-west, and its apex travelled just north of Hyytiälä. The turbulence data were analysed at two locations above the forest canopy and at one location at sub-canopy. At 1412 EET (Eastern European Time, UTC+2), the horizontal and vertical wind speed increased and the wind veered, reflecting the arrival of a gust front. At the same time, the carbon dioxide concentration increased due to turbulent mixing, the temperature decreased due to cold air flow from aloft and aerosol particle concentration decreased due to rain scavenging. An increase in the number concentration of ultra-fine particles (< 10 nm) was detected, supporting the new particle formation either from cloud outflow or due to rain. Five minutes after the gust front (1417 EET), strong horizontal and downward vertical wind speed gusts occurred with maxima of 22 and 15 m s?1, respectively, reflecting the microburst. The turbulence spectra before, during and after the event were consistent with traditional turbulence spectral theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号