首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   7篇
  国内免费   1篇
测绘学   8篇
大气科学   16篇
地球物理   34篇
地质学   48篇
海洋学   10篇
天文学   15篇
自然地理   9篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   9篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   12篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1941年   1篇
  1940年   1篇
  1934年   2篇
排序方式: 共有140条查询结果,搜索用时 46 毫秒
61.
62.
Debris flow frequency and magnitude were determined for 33 basins in southwest British Columbia. Basins were first classified as either weathering-limited or transport-limited using a discriminant function based on debris-contributing area, an area-weighted terrain stability number, and drainage density. Multiple regression was used to predict magnitude, peak discharge, frequency and activity (frequency times magnitude) within each group of basins. Model performance was improved by stratifying the total sample of debris flow basins into weathering-and transport-limited groups. Explained variance increased by an average of 15 per cent in the transport-limited sample, indicating that sediment supply conditions in the more active basins are fundamental in predicting debris flow activity. An independent test of the regression models with 11 basins yielded generally good results for debris flow magnitude and peak discharge. Prediction of debris flow frequency proved problematical in weathering-limited basins. The methods developed here provide estimates of debris flow attributes in basins for which few data on past events are available. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
63.
The quantification of debris‐flow hazard requires estimates of debris‐flow frequency and magnitude. Several methods have been proposed to determine the probable volume of future debris flows from a given basin, but most have neglected to account for debris recharge rates over time, which may lead to underestimation of debris‐flow volumes in basins with rare debris flows. This paper deals with the determination of debris recharge rates in debris‐flow channels based on knowledge of debris storage and the elapsed time since the last debris flow. Data are obtained from coastal British Columbia and a relation is obtained across a sample of basins with similar terrain and climatic conditions. For Rennell Sound on the west coast of the Queen Charlotte Islands, the power‐law relation for area‐normalized recharge rate, Rt, versus elapsed time, te was Rt = 0·23te?0·58 with an explained variance of 75 per cent. A difference in recharge rates may exist between creeks in logged and unlogged forested terrain. The power function for undisturbed terrain was Rt = 0·20te?0·49, while the function for logged areas was Rt = 0·30te?0·77. This result suggests that for the same elapsed time since the last debris flow, clearcut gullies tend to recharge at a slower rate than creeks in old growth forest. This finding requires verification, particularly for longer elapsed times since debris flow, but would have important implications for forest resource management in steep coastal terrain. This study demonstrates that commonly used encounter probability equations are inappropriate for recharge‐limited debris flow channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
64.
Limiting global warming to ‘well below’ 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase even further to 1.5°C is an integral part of the 2015 Paris Agreement. To achieve these aims, cumulative global carbon emissions after 2016 should not exceed 940 – 390?Gt of CO2 (for the 2°C target) and 167 – ?48?Gt of CO2 (for the 1.5°C target) by the end of the century. This paper analyses the EU’s cumulative carbon emissions in different models and scenarios (global models, EU-focused models and national carbon mitigation scenarios). Due to the higher reductions in energy use and carbon intensity of the end-use sectors in the national scenarios, we identify an additional mitigation potential of 26–37 Gt cumulative CO2 emissions up to 2050 compared to what is currently included in global or EU scenarios. These additional reductions could help to both reduce the need for carbon dioxide removals and bring cumulative emissions in global and EU scenarios in line with a fairness-based domestic EU budget for a 2°C target, while still remaining way above the budget for 1.5°C.

Key policy insights
  • Models used for policy advice such as global integrated assessment models or EU models fail to consider certain mitigation potential available at the level of sectors.

  • Global and EU models assume significant levels of CO2 emission reductions from carbon capture and storage to reach the 1.5°C target but also to reach the 2°C target.

  • Global and EU model scenarios are not compatible with a fair domestic EU share in the global carbon budget either for 2°C or for 1.5°C.

  • Integrating additional sectoral mitigation potential from detailed national models can help bring down cumulative emissions in global and EU models to a level comparable to a fairness-based domestic EU share compatible with the 2°C target, but not the 1.5°C aspiration.

  相似文献   
65.
66.
67.
At the beginning of the twenty-first century, a technological change took place in geodetic astronomy by the development of Digital Zenith Camera Systems (DZCS). Such instruments provide vertical deflection data at an angular accuracy level of 0.̋1 and better. Recently, DZCS have been employed for the collection of dense sets of astrogeodetic vertical deflection data in several test areas in Germany with high-resolution digital terrain model (DTM) data (10–50 m resolution) available. These considerable advancements motivate a new analysis of the method of astronomical-topographic levelling, which uses DTM data for the interpolation between the astrogeodetic stations. We present and analyse a least-squares collocation technique that uses DTM data for the accurate interpolation of vertical deflection data. The combination of both data sets allows a precise determination of the gravity field along profiles, even in regions with a rugged topography. The accuracy of the method is studied with particular attention on the density of astrogeodetic stations. The error propagation rule of astronomical levelling is empirically derived. It accounts for the signal omission that increases with the station spacing. In a test area located in the German Alps, the method was successfully applied to the determination of a quasigeoid profile of 23 km length. For a station spacing from a few 100 m to about 2 km, the accuracy of the quasigeoid was found to be about 1–2 mm, which corresponds to a relative accuracy of about 0.05−0.1 ppm. Application examples are given, such as the local and regional validation of gravity field models computed from gravimetric data and the economic gravity field determination in geodetically less covered regions.  相似文献   
68.
Abstract

Finding the shortest path through open spaces is a well-known challenge for pedestrian routing engines. A common solution is routing on the open space boundary, which causes in most cases an unnecessarily long route. A possible alternative is to create a subgraph within the open space. This paper assesses this approach and investigates its implications for routing engines. A number of algorithms (Grid, Spider-Grid, Visibility, Delaunay, Voronoi, Skeleton) have been evaluated by four different criteria: (i) Number of additional created graph edges, (ii) additional graph creation time, (iii) route computation time, (iv) routing quality. We show that each algorithm has advantages and disadvantages depending on the use case. We identify the algorithms Visibility with a reduced number of edges in the subgraph and Spider-Grid with a large grid size to be a good compromise in many scenarios.  相似文献   
69.
The understanding of alpine groundwater dynamics and the interactions with surface stream water is crucial for water resources research and management in mountain regions. In order to characterize local spring and stream water systems, samples at 8 springs, 5 stream gauges and bulk samples of precipitation at 4 sites were regularly collected between January 2012 and January 2016 in the Berchtesgaden Alps for stable water isotope analysis. The sampled hydro-systems are characterized by very different dynamics of the stable isotope signatures. To quantify those differences, we analyzed the stable isotope time series and calculated mean transit times (MTT) and young water fractions (YWF) of the sampled systems. Based on the data analysis, two groups of spring systems could be identified: one group with relatively short MTT (and high YWF) and another group with long MTT (and low YWF). The MTT and the YWF of the sampled streams were intermediate, respectively. The reaction of the sampled spring and stream systems to precipitation input was studied by lag time analysis. The average lag times revealed the influence of snow and ice melt for the hydrology in the study region. It was not possible to determine the recharge elevation of the spring and stream systems due to a lack of altitude effect in the precipitation data. For two catchments, the influence of the spring water stable isotopic composition on the streamflow was shown, highlighting the importance of the spring water for the river network in the study area.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号