首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1549篇
  免费   62篇
  国内免费   21篇
测绘学   26篇
大气科学   128篇
地球物理   418篇
地质学   492篇
海洋学   151篇
天文学   268篇
综合类   8篇
自然地理   141篇
  2022年   11篇
  2021年   18篇
  2020年   23篇
  2019年   28篇
  2018年   39篇
  2017年   27篇
  2016年   39篇
  2015年   37篇
  2014年   45篇
  2013年   73篇
  2012年   55篇
  2011年   44篇
  2010年   57篇
  2009年   69篇
  2008年   67篇
  2007年   57篇
  2006年   51篇
  2005年   47篇
  2004年   28篇
  2003年   53篇
  2002年   30篇
  2001年   38篇
  2000年   35篇
  1999年   24篇
  1998年   24篇
  1997年   23篇
  1996年   12篇
  1995年   22篇
  1994年   29篇
  1993年   28篇
  1992年   12篇
  1991年   20篇
  1990年   25篇
  1989年   18篇
  1987年   18篇
  1986年   13篇
  1985年   33篇
  1984年   25篇
  1983年   24篇
  1982年   39篇
  1981年   33篇
  1980年   25篇
  1979年   28篇
  1978年   24篇
  1977年   29篇
  1976年   24篇
  1975年   17篇
  1974年   18篇
  1973年   23篇
  1971年   13篇
排序方式: 共有1632条查询结果,搜索用时 31 毫秒
11.
There is a general belief that hydrous minerals cannot exist on Venus under current surface conditions. This view was challenged when Johnson and Fegley (2000, Icarus 146, 301-306) showed that tremolite (Ca2Mg5Si8O22(OH)2), a hydrous mineral, is stable against thermal decomposition at current Venus surface temperatures, e.g., 50% decomposition in 4 Ga at 740 K. To further explore hydrous mineral thermal stability on Venus, we experimentally determined the thermal decomposition kinetics of fluorine-bearing tremolite. Fluor-tremolite is thermodynamically more stable than OH-tremolite and should decompose more slowly. However how much slower was unknown. We measured the decomposition rate of fluorine-bearing tremolite and show that its decomposition is several times to greater than ten times slower than that of OH-tremolite. We also show that F-bearing tremolite is depleted in fluorine after decomposition and that fluorine is lost as a volatile species such as HF gas. If tremolite ever formed on Venus, it would probably also contain fluorine. The exceptional stability of F-bearing tremolite strengthens our conclusions that if hydrous minerals ever formed on Venus, they could still be there today.  相似文献   
12.
13.
The modeling of thermal emission from active lava flows must account for the cooling of the lava after solidification. Models of lava cooling applied to data collected by the Galileo spacecraft have, until now, not taken this into consideration. This is a flaw as lava flows on Io are thought to be relatively thin with a range in thickness from ∼1 to 13 m. Once a flow is completely solidified (a rapid process on a geological time scale), the surface cools faster than the surface of a partially molten flow. Cooling via the base of the lava flow is also important and accelerates the solidification of the flow compared to the rate for the ‘semi-infinite’ approximation (which is only valid for very deep lava bodies). We introduce a new model which incorporates the solidification and basal cooling features. This model gives a superior reproduction of the cooling of the 1997 Pillan lava flows on Io observed by the Galileo spacecraft. We also use the new model to determine what observations are necessary to constrain lava emplacement style at Loki Patera. Flows exhibit different cooling profiles from that expected from a lava lake. We model cooling with a finite-element code and make quantitative predictions for the behavior of lava flows and other lava bodies that can be tested against observations both on Io and Earth. For example, a 10-m-thick ultramafic flow, like those emplaced at Pillan Patera in 1997, solidifies in ∼450 days (at which point the surface temperature has cooled to ∼280 K) and takes another 390 days to cool to 249 K. Observations over a sufficient period of time reveal divergent cooling trends for different lava bodies [examples: lava flows and lava lakes have different cooling trends after the flow has solidified (flows cool faster)]. Thin flows solidify and cool faster than flows of greater thickness. The model can therefore be used as a diagnostic tool for constraining possible emplacement mechanisms and compositions of bodies of lava in remote-sensing data.  相似文献   
14.
The BATSE and OSSE instrument teams have modified flight software to promptly (within 2 min of trigger) slew the OSSE detectors to burst locations determined on-board by BATSE. This enables OSSE to make sensitive searches for prompt and delayed post-burst line and continuum emission above 50 keV. In the best cases our sensitivity will be more than an order of magnitude better than any other search in this energy range. We expect to slew to 1–2 bursts per month, based on the OSSE FOV and BATSE event rate. Detections or limits from continued operation of this system may provide significant constraints on burst models. As an example of the observations made using this system, we present preliminary limits for post-burst emission from GRB 950223 on several time scales.  相似文献   
15.
The solution by Sessin and Ferraz-Mello (Celes. Mech. 32, 307–332) of the Hori auxiliary system for the motion of two planets with periods nearly commensurate in the ratio 21 is considerably simplified by the introduction of canonical variables. An analogous canonical transformation simplifies the elliptic restricted problem.  相似文献   
16.
Jack Wisdom 《Icarus》1983,56(1):51-74
The sudden eccentricity increases discovered by J. Wisdom (Astron J.87, 577–593, 1982) are reproduced in numerical integrations of the planar-elliptic restricted three-body problem, verifying that this phenomenon is real. Maximum Lyapunov characteristic exponents for trajectories near the 31 commensurability are computed both with the mappings presented in Wisdom (1982) and by numerical integration of the planar-elliptic problem. In all cases the agreement is excellent, indicating that the mappings accurately reflect whether trajectories are chaotic or quasiperiodic. The mappings are used to trace out the chaotic zone near the 31 commensurability, both in the planar-elliptic problem and to a more limited extent in the three-dimensional elliptic problem. The outer boundary of the chaotic zone coincides with the boundary of the 31 Kirkwood gap in the actual distribution of asteroids within the errors of the asteroid orbital elements.  相似文献   
17.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
18.
The voluminous 2.5 Ga banded iron formations (BIFs) from the Hamersley Basin (Australia) and Transvaal Craton (South Africa) record an extensive period of Fe redox cycling. The major Fe-bearing minerals in the Hamersley-Transvaal BIFs, magnetite and siderite, did not form in Fe isotope equilibrium, but instead reflect distinct formation pathways. The near-zero average δ56Fe values for magnetite record a strong inheritance from Fe3+ oxide/hydroxide precursors that formed in the upper water column through complete or near-complete oxidation. Transformation of the Fe3+ oxide/hydroxide precursors to magnetite occurred through several diagenetic processes that produced a range of δ56Fe values: (1) addition of marine hydrothermal , (2) complete reduction by bacterial dissimilatory iron reduction (DIR), and (3) interaction with excess that had low δ56Fe values and was produced by DIR. Most siderite has slightly negative δ56Fe values of ∼ −0.5‰ that indicate equilibrium with Late Archean seawater, although some very negative δ56Fe values may record DIR. Support for an important role of DIR in siderite formation in BIFs comes from previously published C isotope data on siderite, which may be explained as a mixture of C from bacterial and seawater sources.Several factors likely contributed to the important role that DIR played in BIF formation, including high rates of ferric oxide/hydroxide formation in the upper water column, delivery of organic carbon produced by photosynthesis, and low clastic input. We infer that DIR-driven Fe redox cycling was much more important at this time than in modern marine systems. The low pyrite contents of magnetite- and siderite-facies BIFs suggests that bacterial sulfate reduction was minor, at least in the environments of BIF formation, and the absence of sulfide was important in preserving magnetite and siderite in the BIFs, minerals that are poorly preserved in the modern marine record. The paucity of negative δ56Fe values in older (Early Archean) and younger (Early Proterozoic) BIFs suggests that the extensive 2.5 Ga Hamersley-Transvaal BIFs may record a period of maximum expansion of DIR in Earth’s history.  相似文献   
19.
Microbial mass-dependent fractionation of chromium isotopes   总被引:1,自引:0,他引:1  
Mass-dependent fractionation of Cr isotopes occurs during dissimilatory Cr(VI) reduction by Shewanella oneidensis strain MR-1. Cells suspended in a simple buffer solution, with various concentrations of lactate or formate added as electron donor, reduced 5 or 10 μM Cr(VI) to Cr(III) over days to weeks. In all nine batch experiments, 53Cr/52Cr ratios of the unreacted Cr(VI) increased as reduction proceeded. In eight experiments covering a range of added donor concentrations up to 100 μM, isotopic fractionation factors were nearly invariant, ranging from 1.0040 to 1.0045, with a mean value somewhat larger than that previously reported for abiotic Cr(VI) reduction (1.0034). One experiment containing much greater donor concentration (10 mM lactate) reduced Cr(VI) much faster and exhibited a lesser fractionation factor (1.0018). These results indicate that 53Cr/52Cr measurements should be effective as indicators of Cr(VI) reduction, either bacterial or abiotic. However, variability in the fractionation factor is poorly constrained and should be studied for a variety of microbial and abiotic reduction pathways.  相似文献   
20.
An overview is presented on possible mechanisms that control the leaching behaviour of the oxyanion forming elements As, Cr, Mo, Sb, Se, V and W in cementituous systems and alkaline solid wastes, such as municipal solid waste incinerator bottom ash, fly ash and air pollution control residues, coal fly ash and metallurgical slags. Although the leachability of these elements generally depends on their redox state, speciation measurements are not common. Therefore, experimental observations available in the literature are combined with a summary of the thermal behaviour of these elements to assess possible redox states in freshly produced alkaline wastes, given their origin at high temperature. Possible redox reactions occurring at room temperature, on the other hand, are reviewed because these may alter the initial redox state in alkaline wastes and their leachates. In many cases, precipitation of oxyanions as a pure metalate cannot provide a satisfactory explanation for their leaching behaviour. It is therefore highly likely that adsorption and solid solution formation with common minerals in alkaline waste and cement reduce the leachate concentration of oxyanions below pure-phase solubility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号