Six minor sulphide occurrences hosted by the Lower Devonian Buchan Group have been investigated. Sulphide minerals and associated phases are hosted by both dolostone and limestone lithologies along stylolitized bedding planes, cross‐cutting fractures, low angle minor faults and in cavities. Mineralization was closely associated with minor structures of inferred Tabberabberan age (Middle Devonian), which it appears to have post‐dated, but was largely strata‐bound in nature. The mineralogy of the occurrences is simple and characterized by the following generalized paragenesis which reflects the increasing oxidation state and pH of the mineralizing fluids: pyrite (pseudomorphous after marcasite)‐galena ± sphalerite ± pyrite‐dolomite ± barite‐calcite ± fluorite ± dolomite. The sulphur isotope composition of sulphide minerals varies from ‐32.1 to +4.1‰, with iron and base metal sulphide minerals forming two distinct populations around ‐25‰ and 0‰, respectively. A single barite sample gives a sulphur isotope composition of +22.4‰, which is similar to that estimated for Early Devonian seawater. Fluid inclusions in fluorite and calcite homogenize at temperatures in the range 160 to 212° C and have average salinities of approximately 10 wt% NaCI eq. Sphalerite contains up to 1.81 wt% iron which correlates with colour, and up to 1.43 wt% cadmium. The Pb isotopic pattern of galena suggests a source region with U/Pb(= μ) lower than the crustal average, and a high Th/U. A genetic hypothesis is proposed which involves the circulation of saline fluids through the Snowy River Volcanics, which directly underlie the Buchan Group, during or at some time after the Tabberabberan Orogeny. Although the Buchan occurrences show features characteristic of both Mississippi Valley‐type and stratiform ore deposits, they are most directly comparable to the epigenetic zones of Irish carbonate‐hosted base‐metal deposits. However, Pb‐Zn sulphide mineralization at Buchan appears to have been associated with minor compressional structures, suggesting that a simple correlation with the Irish deposits is not directly applicable. 相似文献
Ensembles of climate model simulations are required for input into probabilistic assessments of the risk of future climate change in which uncertainties are quantified. Here we document and compare aspects of climate model ensembles from the multi-model archive and from perturbed physics ensembles generated using the third version of the Hadley Centre climate model (HadCM3). Model-error characteristics derived from time-averaged two-dimensional fields of observed climate variables indicate that the perturbed physics approach is capable of sampling a relatively wide range of different mean climate states, consistent with simple estimates of observational uncertainty and comparable to the range of mean states sampled by the multi-model ensemble. The perturbed physics approach is also capable of sampling a relatively wide range of climate forcings and climate feedbacks under enhanced levels of greenhouse gases, again comparable with the multi-model ensemble. By examining correlations between global time-averaged measures of model error and global measures of climate change feedback strengths, we conclude that there are no simple emergent relationships between climate model errors and the magnitude of future global temperature change. Algorithms for quantifying uncertainty require the use of complex multivariate metrics for constraining projections. 相似文献
There is considerable research interest on the meaning and measurement of resilience from a variety of research perspectives including those from the hazards/disasters and global change communities. The identification of standards and metrics for measuring disaster resilience is one of the challenges faced by local, state, and federal agencies, especially in the United States. This paper provides a new framework, the disaster resilience of place (DROP) model, designed to improve comparative assessments of disaster resilience at the local or community level. A candidate set of variables for implementing the model are also presented as a first step towards its implementation. 相似文献
Data from 291 small lakes and mires in eastern North America provide information on the natural variability of rates of sediment accumulation in these environments over the last 18,000 yr. Accumulation rates were calculated by linear interpolation between radiocarbon and biostratigraphic dates from sediment cores taken for pollen analysis. Within the data set, the rates were lognormally distributed with a mean accumulation rate of 91 cm/103 yr, and a range from less than 1 to over 3500 cm/103 yr. The accumulation rate data were divided into five subsets that were temporally or spatially distinct and therefore represent different geomorphic and climatic conditions at the time of deposition. Sediments deposited in basins north of 50°N, south of 40°N, and before 10,000 yr B.P. accumulated at much slower rates than sediments accumulating in midlatitude basins (between 40° and 50°N) between 10,000 and 330 yr B.P. Sediment accumulation over the last 330 yr has, on average, been at rates four to five times faster than any time previously. Inorganic sediments that could be radiocarbon-dated have accumulated at significantly lower rates than organic sediments, reflecting differences in depositional processes. For midlatitude basins during the Holocene, the most likely rate of continuous sediment accumulation within our data set is 65 cm/103 yr. Rates below 10 cm/103 yr are likely to be associated with nonconstant processes of sediment accumulation. 相似文献
Sea levels are expected to rise as a result of global temperature increases, one implication of which is the potential exacerbation of sea water intrusion into coastal aquifers. Given that approximately 70% of the world's population resides in coastal regions, it is imperative to understand the interaction between fresh groundwater and sea water intrusion in order to best manage available resources. For this study, controlled investigation has been carried out concerning the temporal variation in sea water intrusion as a result of rising sea levels. A series of fixed inland head two‐dimensional sea water intrusion models were developed with SEAWAT in order to assess the impact of rising sea levels on the transient migration of saline intrusion in coastal aquifers under a range of hydrogeological property conditions. A wide range of responses were observed for typical hydrogeological parameter values. Systems with a high ratio of hydraulic conductivity to recharge and high effective porosity lagged behind the equilibrium sea water toe positions during sea‐level rise, often by many hundreds of meters, and frequently taking several centuries to equilibrate following a cease in sea‐level rise. Systems with a low ratio of hydraulic conductivity to recharge and low effective porosity did not develop such a large degree of disequilibrium and generally stabilized within decades following a cease in sea‐level rise. This study provides qualitative initial estimates for the expected rate of intrusion and predicted degree of disequilibrium generated by sea‐level rise for a range of hydrogeological parameter values. 相似文献
We compare simultaneous high resolution soft X-ray and 6 cm images of the decay phase of an M3 X-ray flare in Hale Region 16413. The photographic X-ray images were obtained on an AS & E sounding rocket flown 7 November, 1979, and the 6 cm observations were made with the VLA. The X-ray images were converted to arrays of line-of-sight emission integrals and average temperature throughout the region. The X-ray flare structure consisted of a large loop system of length 1.3 arc min and average temperature 8 × 106 K. The peak 6 cm emission appeared to come from a region below the X-ray loop. The predicted 6 cm flux due to thermal bremsstrahlung calculated on the basis of the X-ray parameters along the loop was about an order of magnitude less than observed. We model the loop geometry to examine the expected gyroresonance absorption along the loop. We find that thermal gyroresonance emission requiring rather large azimuthal or radial field components, or nonthermal gyrosynchrotron emission involving continual acceleration of electrons can explain the observations. However, we cannot choose between these possibilities because of our poor knowledge of the loop magnetic field. 相似文献
This short note sets out a personal experience of the transition from an academic environment to the great wide world of marketing and discusses some of the similarities and differences between the two. 相似文献
Summary. A numerical model is constructed of the tides in a hemispherical ocean driven by the forces corresponding to the Y2–2 equilibrium tide. The model is used to study how tidal dissipation is affected by changes in the position of the ocean relative to the Earth's rotational axis and to test a hypothesis concerning the Gerstenkorn event. As the position of the Earth's axis is varied with respect to the ocean, the model shows changes in the dissipation rate due to the changing position and importance of individual resonances of the ocean. However, a cooperative effect is also observed which results, for an ocean of depth 4400 m, in broad frequency bands near 10 rad day−1 and-6 rad day−1 in which the dissipation rate remains high. The cooperative effect is found to arise from the existence, in an unbounded ocean, of resonances at these frequencies which match the tidal forces. When ocean boundaries are introduced, the new resonances near these frequencies contain a large component of the underlying resonance and as a result are themselves a good match to the driving forces. For the real ocean, these findings imply that changes in the position of the pole, and also possibly changes in the shape of the ocean, will on average have little effect on the energy dissipated by the tides. However in the past changes in the mean depth and area of the ocean or the increased rotation rate of the Earth may have resulted in a smaller dissipation rate. 相似文献
The mafic layered rocks of the Bushveld Complex are 6–8 km thick and crop out over an area of 65,000 km2. Previous interpretations of the Bouguer gravity anomalies suggested that the intrusion consisted of two totally separate bodies. However, the mafic sequences in these arcuate western and eastern limbs are remarkably similar, with at least six petrologically distinctive layers and sequences being recognisable in both limbs. Such similarity of sequences in two totally discrete bodies 200–300 km apart is petrologically implausible, and it is suggested that they formed within a single lopolithic intrusion.
All previous Bouguer gravity models failed to consider the isostatic response of the crust to emplacement of this huge mass of mafic magma. Isostatic adjustment as a result of this intrusion would have caused the base of the crust to be depressed by as much as 6 km. With this revised whole crustal model, it becomes possible to construct a gravity model, consistent with observed data, which includes a 6 km-thick sequence of mafic rocks connecting the western and eastern limbs of the Bushveld Complex. The exact depth at which the mafic rocks of the Bushveld Complex lie in the centre of the structure cannot be constrained by the gravity data.
Such a first-order model is an approximation, because there have been subsequent deformation and structural readjustments in the crust, some of them probably related to the emplacement of the Bushveld Complex. Specifically, the observed geometry of the rocks around the Crocodile River, Dennilton, Marble Hall and Malope Domes suggests that major upwarping of the crust occurred on a variety of scales, triggered by emplacement of the Bushveld Complex. 相似文献