首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   12篇
  国内免费   6篇
测绘学   27篇
大气科学   22篇
地球物理   144篇
地质学   241篇
海洋学   79篇
天文学   148篇
自然地理   80篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   9篇
  2016年   11篇
  2015年   15篇
  2014年   12篇
  2013年   35篇
  2012年   20篇
  2011年   27篇
  2010年   25篇
  2009年   22篇
  2008年   27篇
  2007年   21篇
  2006年   27篇
  2005年   20篇
  2004年   24篇
  2003年   16篇
  2002年   13篇
  2001年   13篇
  2000年   19篇
  1999年   13篇
  1998年   19篇
  1997年   21篇
  1996年   11篇
  1995年   16篇
  1994年   11篇
  1993年   9篇
  1992年   13篇
  1991年   11篇
  1990年   12篇
  1989年   9篇
  1988年   10篇
  1987年   9篇
  1986年   11篇
  1985年   15篇
  1984年   13篇
  1983年   16篇
  1982年   10篇
  1981年   18篇
  1980年   12篇
  1979年   10篇
  1978年   13篇
  1977年   9篇
  1975年   12篇
  1974年   10篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1966年   4篇
排序方式: 共有741条查询结果,搜索用时 0 毫秒
611.
The Fe‐FeS system maintains a eutectic temperature of 990 ± 10 °C to at least 8 GPa if starting materials and pressure media are rigorously dehydrated. Literature reports of pressure‐induced freezing point depression of the eutectic for the Fe‐FeS system are not confirmed. Modest addition of oxygen alone is confirmed to cause negligible freezing point depression at 6 GPa. Addition of H alone causes a progressive decrease in the eutectic temperature with P in the Fe‐FeS‐H system to below 965 °C at 6 GPa to below 950 °C at 8 GPa. It is our hypothesis that moisture contamination in unrigorously dried experiments may be an H source for freezing point depression. O released from H2O disproportionation reacts with Fe and is sequestered as ferropericlase along the sample capsules walls, leaving the H to escape the system and/or enter the Fe‐FeS mixture. The observed occurrence of ferropericlase on undried MgO capsule margins is otherwise difficult to explain, because an alternate source for the oxygen in the ferropericlase layer is difficult to identify. This study questions the use of pressure‐depressed Fe‐S eutectic temperatures and suggests that the lower eutectic temperatures sometimes reported are achieved by moving into the ternary Fe‐S‐H system. These results adjust slightly the constraints on eutectic temperatures allowed for partly solidified cores on small planets. H substantially diminishes the temperature extent of the melting interval in Fe‐S by reducing the melting points of the crystalline phases more than it depresses the eutectic.  相似文献   
612.
613.
The composition and evolution of a metallic planetary core is determined by the behavior with pressure of the eutectic and the liquidus on the Fe-rich side of the Fe-FeS eutectic. New experiments at 6 GPa presented here, along with existing experimental data, inform a thermodynamic model for this liquidus from 1 bar to at least 10 GPa. Fe-FeS has a eutectic that becomes more Fe-rich but remains constant in T up to 6 GPa. The 1 bar, 3 GPa, and 6 GPa liquidi all cross at a pivot point at 1640 ± 5 K and FeS37 ± 0.5. This liquid/crystalline metal equilibrium is T-x-fixed and pressure independent through 6 GPa. Models of the 1 bar through 10 GPa experimental liquidi show that with increasing P there is an increase in the T separation between the liquidus and the crest of the metastable two-liquid solvus. The solvus crest decreases in T with increasing P. The model accurately reproduces all the experimental liquidi from 1 bar to 10 GPa, as well as reproducing the 0-6 GPa pivot point. The 14 GPa experimental liquidus ( [Chen et al., 2008a] and Chen et al., 2008b) deviates sharply from the lower pressure trends indicating that the 0-10 GPa model no longer applies to this 14 GPa data.  相似文献   
614.
In recent decades, tangential-flow ultrafiltration (UF) technology has become a primary tool for isolating large amounts of “ultrafiltered” marine dissolved organic carbon (UDOC; 0.1 μm to ∼1 nm) for the detailed characterization of DOC chemical composition and radiocarbon (Δ14C) signatures. However, while total DOC Δ14C values are generally thought to be quite similar in the world ocean, previous studies have reported widely different Δ14C values for UDOC, even from very similar ocean regions, raising questions about the relative “reactivity” of high molecular weight (HMW) DOC. Specifically, to what degree do variations in DOM molecular weight (MW) vs. composition alter its relative persistence, and therefore HMW DOC Δ14C values?In this study we evaluate the effects of varying proportions of HMW vs. low molecular weight (LMW) DOC on UDOC Δ14C values. Using concentration factor (CF) as a proxy for MW distributions, we modeled the retention of both OC and Δ14C in several very large CF experiments (CF >3000), from three depths (20, 670, and 915 m) in the North Pacific Subtropical Gyre (NPSG). The resulting DOC and Δ14C UF permeation coefficients generally increase with depth, consistent with mass balance trends, indicating very significant permeation of LMW, 14C-depleted DOC at depth, and higher recoveries of Δ14C-enriched, HMW DOC in the surface. In addition, changes in CF during sample concentration and ionic strength during sample diafiltration had very large and predictable impacts on UDOC Δ14C values.Together these results suggest that previously reported disparities in UDOC Δ14C values are reconciled by linked trends of Δ14C content vs. MW. At low CFs, UDOC samples have similar Δ14C values to total DOC. In contrast, UDOC samples collected at extremely high CFs (and after diafiltration) have more positive Δ14C values. We demonstrate that the observed relationships between UDOC Δ14C and CF derived from our data can directly explain offsets in all previously published UDOC Δ14C values for the NPSG. While CF is not traditionally considered in UF studies, our results indicate it can substantially influence the interpretation of UDOC 14C “age”, and thus reactivity, in the marine environment. In addition, our results indicate that CF can in fact be used as a proxy for average MW. We suggest that a variable-CF-UF approach, coupled with molecular-level Δ14C analyses, presents a new tool for studying relationships between molecular size, age, and “labile” DOC distributions in the ocean.  相似文献   
615.
Data are presented from the DRIFT-IId detector operated in the Boulby Underground Science Facility in England. A 0.8 m3 fiducial volume, containing partial pressures of 30 Torr CS2 and 10 Torr CF4, was exposed for a duration of 47.4 live-time days with sufficient passive shielding to provide a neutron free environment within the detector. The nuclear recoil events seen are consistent with a remaining low-level background from the decay of radon daughters attached to the central cathode of the detector. However, charge from such events must drift across the entire width of the detector, and thus display large diffusion upon reaching the readout planes of the device. Exploiting this feature, it is shown to be possible to reject energy depositions from these Radon Progeny Recoil events while still retaining sensitivity to fiducial-volume nuclear recoil events. The response of the detector is then interpreted, using the F nuclei content of the gas, in terms of sensitivity to proton spin-dependent WIMP-nucleon interactions, displaying a minimum in sensitivity cross section at 1.8 pb for a WIMP mass of 100 GeV/c2. This sensitivity was achieved without compromising the direction sensitivity of DRIFT.  相似文献   
616.
The reflex motion of a star induced by a planetary companion is too small to detect by photographic astrometry. The apparent discovery in the 1960s of planetary systems around certain nearby stars, in particular Barnard’s star, turned out to be spurious. Conventional stellar radial velocities determined from photographic spectra at that time were also too inaccurate to detect the expected reflex velocity changes. In the late 1970s and early 1980s, the introduction of solid-state, signal-generating detectors and absorption cells to impose wavelength fiducials directly on the starlight, reduced radial velocity errors to the point where such a search became feasible. Beginning in 1980, our team from UBC introduced an absorption cell of hydrogen fluoride gas in front of the CFHT coudé spectrograph and, for 12 years, monitored the radial velocities of some 29 solar-type stars. Since it was assumed that extra-solar planets would most likely resemble Jupiter in mass and orbit, we were awarded only three or four two-night observing runs each year. Our survey highlighted three potential planet hosting stars, γ Cep (K1 IV), β Gem (K0 III), and ? Eri (K2 V). The putative planets all resembled Jovian systems with periods and masses of: 2.5 years and 1.4 MJ, 1.6 years and 2.6 MJ, and 6.9 years and 0.9 MJ, respectively. All three were subsequently confirmed from more extensive data by the Texas group led by Cochran and Hatzes who also derived the currently accepted orbital elements.None of these three systems is simple. All five giant stars and the supergiant in our survey proved to be intrinsic velocity variables. When we first drew attention to a possible planetary companion to γ Cep in 1988 it was classified as a giant, and there was the possibility that its radial velocity variations and those of β Gem (K0 III) were intrinsic to the stars. A further complication for γ Cep was the presence of an unseen secondary star in an orbit with a period initially estimated at some 30 years. The implication was that the planetary orbit might not be stable, and a Jovian planet surviving so close to a giant then seemed improbable. Later observations by others showed the stellar binary period was closer to 67 years, the primary was only a sub-giant and a weak, apparently synchronous chromospheric variation disappeared. Chromospheric activity was considered important because κ1 Cet, one of our program stars, showed a significant correlation of its radial velocity curve with chromospheric activity.? Eri is a young, magnetically active star with spots making it a noisy target for radial velocities. While the signature of a highly elliptical orbit (e = 0.6) has persisted for more than three planetary orbits, some feel that even more extensive coverage is needed to confirm the identification despite an apparent complementary astrometric acceleration detected with the Hubble Space Telescope.We confined our initial analyses of the program stars to looking for circular orbits. In retrospect, it appears that some 10% of our sample did in fact have Jovian planetary companions in orbits with periods of years.  相似文献   
617.
With increasing intensity of metamorphism, and particularly metasomatism, it becomes more and more difficult to separate amphibolites in North‐western Queensland into ortho‐ and para‐amphibolites, and a stage is reached at which the two are indistinguishable. Field evidence, carefully sought, has enabled the origin of some apparently identical rocks to be determined, and laboratory methods were applied to these rocks to see if grounds for the separation of amphibolites of unknown origin could be determined. None of the six methods tried — mineralogy (including feldspar twinning), chemical analysis (including TiO2 content), spectrography, rock magnetism — proved to be as successful as the field method in distinguishing the two rock groups; some methods used with apparent success elsewhere, such as feldspar twinning or chemical analyses, are found to be unsuccessful here, which suggests that though the problem is world‐wide, solutions are only of local validity.  相似文献   
618.
Extensive terrace and flood plain deposits occur along the Lower Macleay River. A sequence of terraces from oldest to youngest was named: Madron, Corangula, Mungay, Mooneba, Belgrave and Macleay deposits (contemporary). Basal sediments in the Mooneba terrace were dated by radiocarbon analysis at 3,280 ± 55 years; basal sediments of the Mungay terrace were dated at 6,425 ± 105 years. The Madron and Corangula terraces are considered very much older than the Mungay. The flood plain consists of two early cycles of aggradation buried under 23m of estuarine sediment, which in turn is overlain by up to 6m of alluvium. The estuarine sediments were dated at 8,530 ± 200 years at elevation —4m relative to mean sea level. The base of the overlying Smithtown alluvium was dated at 3,295 ± 95 years. A general chronology is presented for the Lower Macleay valley, and a sequence of terrace soils is discussed.  相似文献   
619.
Iron carbides containing from 31 to 17 atomic % carbon, with cohenite XRD structure and optical properties, were grown in experiments in Fe–Ni–S–C, Fe–Ni–C, and in Fe–C at 1, 6, and 7 GPa. X-ray cell volumes increase with C content. Compositions listed above vary considerably outside the nominal (Fe,Ni)3C stoichiometry of cohenite/cementite. Cohenites coexisting with Fe–C liquid are carbon poor. The Eckstrom-Adcock carbide, nominally Fe7C3, was found to show compositions from 29 to 36 atomic % C at 7 GPa in Fe–C. Both these materials are better regarded as solutions than as stoichiometric compounds, and their properties such as volume have compositional dependencies, as do the iron oxides, sulfides, silicides, and hydrides. The fraction of C dissolved in cohenite-saturated alloy is found to become smaller between 1 and 7 GPa. If this trend continues at higher pressures, the deep mantle should be easier to saturate with carbide than the shallow mantle, whether or not carbide is metastable as at ambient pressure. At temperatures below the cohenite-graphite peritectic, cohenite may grow as a compositionally zoned layer between Fe and graphite. The Eckstrom-Adcock carbide joins the assemblage at 7 GPa. Phases appear between Fe and C in an order consistent with metasomatic interface growth between chemically incompatible feed stocks. Diffusion across the carbide layer is not the growth rate limiting step. Carbon transport along the grain boundaries of solid Fe source stock at 1 GPa, to form C-saturated Fe alloy, is observed to be orders of magnitude faster than the cohenite layer growth. Growth stagnates too rapidly to be consistent with diffusion control. Furthermore, lateral variations in carbide layer thickness, convoluted inert marker horizons, and variable compositional profiles within the layers suggest that there are local transport complexities not covered by one-dimensional diffusive metasomatic growth. In contrast to many transport phenomena which slow with pressure, at 7 GPa and 1,162 °C, carbide growth without open grain boundaries is faster than at 1 GPa with fast grain boundary channels, again suggesting C transport is less of a constraint on growth than C supply. C supply at 7 GPa is enhanced by graphite metastability and the absence of fast grain boundary channels to divert C into the Fe instead of growing carbide. At both 1 and 7 GPa, the growth rate of carbide is found to systematically vary depending on which of two stock pieces of graphite are used to form the growth couple, suggesting that some property of each specific graphite, like C release rate, possibly from amorphous binder material, may influence the cohenite growth process. At temperatures near and above the cohenite-graphite peritectic at 1–1.5 GPa, complex intergrowths involving Fe–C liquids and extensive thermal migration transport were encountered, eroding the organized spatial resolution, and the range of cohenite compositions found grown below this peritectic from growth couples of crystalline Fe and graphite. The migration of graphite to a position in the metasomatic sequence between liquid and cohenite demonstrates that the solubility of graphite in liquid increases with temperature above the peritectic, whereas the solubility of graphite in cohenite below the peritectic decreases with temperature. The variable solubility of graphite in cohenite, shown by thermal migration, emphasizes that cohenite does have compositional variations.  相似文献   
620.
Reynolds shear stress (RS = –uw′) and sand transport patterns over a vegetated foredune are explored using three‐dimensional velocity data from ultrasonic anemometers (at 0 · 2 and 1 · 2 m) and sand transport intensity from laser particle counters (at 0 · 014 m). A mid‐latitude cyclone on 3–4 May 2010 generated storm‐force winds (exceeding 20 m s–1) that shifted from offshore to obliquely alongshore. Quadrant analysis was used to characterize the spatial variation of RS quadrant components (Q1 through Q4) and their relative contributions were parameterized using the flow exuberance relation, EXFL = (Q1 + Q3)/(Q2 + Q4). The magnitudes of RS and sand transport varied somewhat independently over the dune as controlled by topographic forcing effects on flow dynamics. A ‘flow exuberance effect’ was evident such that Q2 (ejection‐like) and Q4 (sweep‐like) quadrants (that contribute positively to RS) dominated on the beach, dune toe, and lower stoss, whereas Q1 and Q3 (that contribute negatively to RS) dominated near the crest. This exuberance effect was not expressed, however, in sand transport patterns. Instead, Q1 and Q4, with above‐average streamwise velocity fluctuations (+u′), were most frequently associated with sand transport. Q4 activity corresponded with most sand transport at the beach, toe, and stoss locations (52, 60, 100%). At the crest, 25 to 86% of transport was associated with Q1 while Q4 corresponded with most of the remaining transport (13 to 59%). Thus, the relationship between sand transport and RS is not as straightforward as in traditional equations that relate flux to stress in increasing fashion. Generally, RS was poorly associated with sand transport partly because Q1 and Q4 contributions offset each other in RS calculations. Thus, large amounts of transport can occur with small RS. Turbulent kinetic energy or Reynolds normal stresses (u2, w2) may provide stronger associations with sand transport over dunes, although challenges exist on how to normalize and compare these quantities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号