首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29335篇
  免费   470篇
  国内免费   319篇
测绘学   625篇
大气科学   1825篇
地球物理   5269篇
地质学   11288篇
海洋学   2968篇
天文学   6879篇
综合类   68篇
自然地理   1202篇
  2022年   297篇
  2021年   455篇
  2020年   511篇
  2019年   559篇
  2018年   1092篇
  2017年   1043篇
  2016年   1151篇
  2015年   549篇
  2014年   1045篇
  2013年   1692篇
  2012年   1157篇
  2011年   1440篇
  2010年   1290篇
  2009年   1562篇
  2008年   1331篇
  2007年   1398篇
  2006年   1305篇
  2005年   759篇
  2004年   707篇
  2003年   659篇
  2002年   688篇
  2001年   619篇
  2000年   569篇
  1999年   461篇
  1998年   480篇
  1997年   453篇
  1996年   392篇
  1995年   351篇
  1994年   379篇
  1993年   296篇
  1992年   297篇
  1991年   288篇
  1990年   323篇
  1989年   223篇
  1988年   225篇
  1987年   268篇
  1986年   209篇
  1985年   316篇
  1984年   278篇
  1983年   259篇
  1982年   276篇
  1981年   204篇
  1980年   245篇
  1979年   195篇
  1978年   211篇
  1977年   165篇
  1976年   163篇
  1975年   172篇
  1974年   167篇
  1973年   166篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
93.
94.
Velocities inside avalanches have been calculated for many years by calculatingthe cross-correlation between opto-electronic sensors using a method pioneered by inlinecite Nishimura et al. and Dent et al. Their approachhas been widely adopted but there has been little discussion of the optimal designof such instruments and the best analysis techniques. This paper discusses some ofthe different sources of error that arise and how these can be mitigated. A statisticalframework that describes such instruments is developed and used to quantify the errors.  相似文献   
95.
High‐precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9 ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time‐parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high‐precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST‐C2) indicating a more northeasterly distribution of this fan than reported previously. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
96.
We present predictions for the numbers of ultracool dwarfs in the Galactic disc population that could be detected by the WFCAM/UKIDSS Large Area Survey and Ultra Deep Survey. Simulated samples of objects are created with masses and ages drawn from different mass functions and birthrates. Each object is then given absolute magnitudes in different passbands based on empirically derived bolometric correction versus effective temperature relationships (or model predictions for Y dwarfs). These are then combined with simulated space positions, velocities and photometric errors to yield observables such as apparent magnitudes and proper motions. Such observables are then passed through the survey selection mechanism to yield histograms in colour. This technique also produces predictions for the proper motion histograms for ultracool dwarfs and estimated numbers for the as yet undetected Y dwarfs. Finally, it is shown that these techniques could be used to constrain the ultra-low-mass mass function and birthrate of the Galactic disc population.  相似文献   
97.
 The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the Atmospheric Model Intercomparison Project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979–1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. Large model-to-model variations were also seen in the simulations of the annual mean meridional stress field over equatorial Indian Ocean, south central Pacific, north east Pacific and equatorial eastern Pacific oceans. It is shown that the systematic errors in simulating the surface winds are related to the systematic errors in simulating the Inter-Tropical Convergence Zone (ITCZ) in its location and intensity. Weaker than observed annual mean southwesterlies simulated by most models over Somali is due to weaker than observed southwesterlies during the Northern Hemisphere summer. This is related to the weaker than observed land precipitation simulated by most models during the Northern Hemisphere summer. The diversity in simulation of the surface wind over Somali and equatorial Indian ocean is related to the diversity of AGCMs in simulating the precipitation zones in these regions. Received: 2 August 1996 / Accepted: 7 February 1997  相似文献   
98.
 A steady radon exhalation is assumed in most publications. In a village of North-East Hungary, however, high radon concentrations have been measured, differing strongly in neighbouring houses and varying in time, due to the interplay of geochemical phenomena. Received: 20 November 1995 · Accepted: 18 June 1996  相似文献   
99.
We have undertaken a study of coronal features observed at meter-decameter wavelengths using the Clark Lake radioheliograph. Among the coronal structures we have studied are the radio manifestations of coronal streamers on the solar disk and above the solar limb. We have analyzed the radio data quantitatively, using ray-tracing models for comparison with the maps. Our study provides information about the streamers' three-dimensional shapes, scales, and density profiles, for comparison with related observations using white-light coronagraphs.  相似文献   
100.
A dominant source of errors in swath bathymetry is acoustic interference. In 1989 the author published an analysis of these errors and predicted depth accuracies for a system which reduced their effect by averaging. This present paper shows how a considerable improvement in performance may be obtained by a variety of signal processing strategies that include the use of several widely spaced receivers and the elimination of the most unsatisfactory measurements before averaging. Simulations show how impressive sea bed profiles can be produced with a single ping, even at low signal-to-interference ratios  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号