首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   10篇
  国内免费   7篇
测绘学   1篇
大气科学   30篇
地球物理   24篇
地质学   347篇
海洋学   15篇
天文学   14篇
自然地理   94篇
  2014年   6篇
  2013年   25篇
  2012年   7篇
  2011年   11篇
  2010年   17篇
  2009年   8篇
  2008年   14篇
  2007年   15篇
  2006年   14篇
  2005年   14篇
  2004年   6篇
  2003年   10篇
  2002年   10篇
  2001年   9篇
  2000年   11篇
  1999年   8篇
  1998年   20篇
  1997年   27篇
  1996年   25篇
  1995年   16篇
  1994年   5篇
  1993年   10篇
  1992年   20篇
  1991年   17篇
  1990年   16篇
  1989年   14篇
  1988年   16篇
  1987年   18篇
  1986年   11篇
  1985年   12篇
  1984年   8篇
  1983年   12篇
  1982年   12篇
  1981年   9篇
  1980年   2篇
  1979年   10篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1967年   5篇
  1963年   3篇
  1942年   3篇
排序方式: 共有525条查询结果,搜索用时 15 毫秒
101.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   
102.
Sedimentation rate and changes in relative sea level affect early diagenetic cementation along key stratal surfaces within the deeply buried Upper Jurassic Fulmar Formation, South Central Graben, UKCS. As a result of the bioturbated nature of the shallow marine strata, variations in ichnofabrics and cross-cutting relationships between trace fossils are important in identifying and correlating stratal surfaces. Two transgressive and two regressive surfaces/sequence boundaries were studied, using petrographical, mineralogical and geochemical techniques. Cements, including early diagenetic pyrite framboids, grain-rimming apatite, microcrystalline dolomite and ankerite, occur at, above and immediately below both transgressive and forced regressive surfaces/sequence boundaries. Breaks or subdued rates of sedimentation associated with both types of surfaces meant that the sediment package resided within early diagenetic zones for prolonged periods of time, enhancing diagenetic reactions at and below the surfaces. The distribution of ankerite, despite being a deep-burial cement, was primarily controlled by concentrations of bioclasts that are particularly abundant at transgressive surfaces. The diagenetic character of the forced regressive surfaces/sequence boundaries is more complex than that of the transgressive surfaces, both in terms of mineralogy and paragenesis. This is attributed to the superimposition of diagenetic assemblages as a result of erosion, re-sedimentation and sediment by-passing. Although the diagenetic signature of the surfaces has been modified by dissolution/replacement reactions during deep burial, early diagenetic signatures can still be distinguished.  相似文献   
103.
A difference in the size of Neoglacial lateral moraines on either side of a valley axis (within-valley asymmetry of lateral moraine development) is described. Analysis of clast roundness has revealed subangular material in latero-terminal and terminal moraines; lateral moraines, however, exhibit a compositional gradient of increasing angularity with distance from the former glacier snout. Comparisons with clasts of known origin suggest that this 'roundness gradient' may be explained with reference to either or both of two hypotheses: (1) a variable proportion of supraglacial (or englacial) to subglacial transported material; and (2) the variable composition of regolith incorporated by a push mechanism from the valley sides. Within-valley asymmetry is inferred to result where the supply of debris to lateral moraines from these sources is unequal either side of a valley axis. Both interpretations are also consistent with the relatively large size of latero-terminal sections of end moraines. In order to account for the discrepancy between moraine size and apparent debris supply rates, it is suggested that the largest lateral moraines may have been formed over a longer time scale than the 'Little Ice Age', and that reworking of deposits may have occurred. The supply of debris to the north-facing lateral moraine at Nordre Illåbreen has been so great that it has developed into a rock glacier; this suggests the possibility that subglacial material and valley-side regolith, as well as supraglacial material, contributes to the formation of ice-cored rock glaciers.  相似文献   
104.
105.
Scdimentological studies of a small ice-contact proglacial lake at Briksdal. southwest Norway, have led to the discovery of two types of tubular traces developed on the surfaces of material collected in sediment traps. The traces are described and attributed, with certainty, to the burrowing activities of chironomid midge larvae.  相似文献   
106.
Anatectic veins containing the Be minerals khmaralite and berylliansapphirine as primary phases (or surinamite derived therefrom)are associated with Mg–Al-rich paragneisses at three localitiesin the ultrahigh-temperature Napier complex, Antarctica, a uniqueBe mineralization in the granulite facies. Likely precursorsof the paragneisses are volcaniclastic deposits that were hydrothermallyaltered by heated seawater prior to metamorphism. Regular distributionof Be among minerals in the paragneisses suggests an approachto equilibrium with Be greatly concentrated in sapphirine (25–3430ppm Be) or cordierite (560–930 ppm Be) relative to plagioclaseAn53–66 (14–43 ppm Be) > cores of coarse-grainedorthopyroxene (0·7–29 ppm Be) > coronitic orthopyroxene(0·4–14 ppm Be) sillimanite (0·1–26ppm Be) plagioclase An18–33 (0·6–15 ppmBe) > biotite (0·06–8 ppm Be) > K-feldspar,quartz, garnet (0·05–0·7 ppm Be). Sapphirine-bearingparagneisses have average Be concentrations, 4·9 ±2·4 ppm (13 samples), about twice that of typical pelites,whereas paragneisses lacking sapphirine and primary cordieritehave only 2·9 ± 2·1 ppm Be (12 samples),implying some loss of Be during metamorphism. The likely sourcerocks for the Be-rich melts were biotitic rocks lacking theBe sinks sapphirine and cordierite. These gneisses were probablyless competent than the sapphirine-bearing gneisses, so themelts were drawn to the latter and collected in spaces openedduring deformation and boudinage of the more competent paragneisses.Fractionation of the melts concentrated Be to the extent thatBe minerals could crystallize. The final result was Be-mineralizedanatectic veins hosted by relatively Be-rich sapphirine-bearingparagneisses. KEY WORDS: Antarctica; beryllium; granulite facies; microprobe; sapphirine  相似文献   
107.
108.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   
109.
Numerous freshwater ecosystems, dense concentrations of humans along the eastern seaboard, extensive forests and a history of intensive land use distinguish the New England/Mid-Atlantic Region. Human population densities are forecast to increase in portions of the region at the same time that climate is expected to be changing. Consequently, the effects of humans and climatic change are likely to affect freshwater ecosystems within the region interactively. The general climate, at present, is humid continental, and the region receives abundant precipitation. Climatic projections for a 2 × CO2 atmosphere, however, suggest warmer and drier conditions for much of this region. Annual temperature increases ranging from 3–5°C are projected, with the greatest increases occurring in autumn or winter. According to a water balance model, the projected increase in temperature will result in greater rates of evaporation and evapotranspiration. This could cause a 21 and 31% reduction in annual stream flow in the southern and northern sections of the region, respectively, with greatest reductions occurring in autumn and winter. The amount and duration of snow cover is also projected to decrease across the region, and summer convective thunderstorms are likely to decrease in frequency but increase in intensity. The dual effects of climate change and direct anthropogenic stress will most likely alter hydrological and biogeochemical processes, and, hence, the floral and faunal communities of the region's freshwater ecosystems. For example, the projected increase in evapotranspiration and evaporation could eliminate most bog ecosystems, and increases in water temperature may increase bioaccumulation, and possibly biomagnification, of organic and inorganic contaminants. Not all change may be adverse. For example, a decrease in runoff may reduce the intensity of ongoing estuarine eutrophication, and acidification of aquatic habitats during the spring snowmelt period may be ameliorated. Recommendations for future monitoring efforts include: (1) extending and improving data on the distribution, abundance and effect of anthropogenic stressors (non-point pollution) within the region; and (2) improving scientific knowledge regarding the contemporary distribution and abundance of aquatic species. Research recommendations include: (1) establishing a research centre(s) where field studies designed to understand interactions between freshwater ecosystems and climate change can be conducted; (2) projecting the future distribution, activities and direct effects of humans within the region; (3) developing mathematical analyses, experimental designs and aquatic indicators that distinguish between climatic and anthropogenic effects on aquatic systems; (4) developing and refining projections of climate variability such that the magnitude, frequency and seasonal timing of extreme events can be forecast; and (5) describing quantitatively the flux of materials (sediments, nutrients, metals) from watersheds characterized by a mosaic of land uses. © 1997 John Wiley & Sons, Ltd.  相似文献   
110.
Region 2 comprises arctic and subarctic North America and is underlain by continuous or discontinuous permafrost. Its freshwater systems are dominated by a low energy environment and cold region processes. Central northern areas are almost totally influenced by arctic air masses while Pacific air becomes more prominent in the west, Atlantic air in the east and southern air masses at the lower latitudes. Air mass changes will play an important role in precipitation changes associated with climate warming. The snow season in the region is prolonged resulting in long-term storage of water so that the spring flood is often the major hydrological event of the year, even though, annual rainfall usually exceeds annual snowfall. The unique character of ponds and lakes is a result of the long frozen period, which affects nutrient status and gas exchange during the cold season and during thaw. GCM models are in close agreement for this region and predict temperature increases as large as 4°C in summer and 9°C in winter for a 2 × CO2 scenario. Palaeoclimate indicators support the probability that substantial temperature increases have occurred previously during the Holocene. The historical record indicates a temperature increase of > 1°C in parts of the region during the last century. GCM predictions of precipitation change indicate an increase, but there is little agreement amongst the various models on regional disposition or magnitude. Precipitation change is as important as temperature change in determining the water balance. The water balance is critical to every aspect of hydrology and limnology in the far north. Permafrost close to the surface plays a major role in freshwater systems because it often maintains lakes and wetlands above an impermeable frost table, which limits the water storage capabilities of the subsurface. Thawing associated with climate change would, particularly in areas of massive ice, stimulate landscape changes, which can affect every aspect of the environment. The normal spring flooding of ice-jammed north-flowing rivers, such as the Mackenzie, is a major event, which renews the water supply of lakes in delta regions and which determines the availability of habitat for aquatic organisms. Climate warming or river damming and diversion would probably lead to the complete drying of many delta lakes. Climate warming would also change the characteristics of ponds that presently freeze to the bottom and result in fundamental changes in their limnological characteristics. At present, the food chain is rather simple usually culminating in lake trout or arctic char. A lengthening of the growing season and warmer water temperature would affect the chemical, mineral and nutrient status of lakes and most likely have deleterious effects on the food chain. Peatlands are extensive in region 2. They would move northwards at their southern boundaries, and, with sustained drying, many would change form or become inactive. Extensive wetlands and peatlands are an important component of the global carbon budget, and warmer and drier conditions would most likely change them from a sink to a source for atmospheric carbon. There is some evidence that this may be occurring already. Region 2 is very vulnerable to global warming. Its freshwater systems are probably the least studied and most poorly understood in North America. There are clear needs to improve our current knowledge of temperature and precipitation patterns; to model the thermal behaviour of wetlands, lakes and rivers; to understand better the interrelationships of cold region rivers with their basins; to begin studies on the very large lakes in the region; to obtain a firm grasp of the role of northern peatlands in the global carbon cycle; and to link the terrestrial water balance to the thermal and hydrological regime of the polar sea. Overall, there is a strong need for basic research and long-term monitoring. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号