首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
  国内免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   59篇
地质学   23篇
海洋学   15篇
天文学   2篇
自然地理   1篇
  2012年   3篇
  2011年   10篇
  2010年   1篇
  2009年   1篇
  2008年   9篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   11篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1978年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
71.
A Monte Carlo-based approach to assess uncertainty in recharge areas shows that incorporation of atmospheric tracer observations (in this case, tritium concentration) and prior information on model parameters leads to more precise predictions of recharge areas. Variance-covariance matrices, from model calibration and calculation of sensitivities, were used to generate parameter sets that account for parameter correlation and uncertainty. Constraining parameter sets to those that met acceptance criteria, which included a standard error criterion, did not appear to bias model results. Although the addition of atmospheric tracer observations and prior information produced similar changes in the extent of predicted recharge areas, prior information had the effect of increasing probabilities within the recharge area to a greater extent than atmospheric tracer observations. Uncertainty in the recharge area propagates into predictions that directly affect water quality, such as land cover in the recharge area associated with a well and the residence time associated with the well. Assessments of well vulnerability that depend on these factors should include an assessment of model parameter uncertainty. A formal simulation of parameter uncertainty can be used to delineate probabilistic recharge areas, and the results can be expressed in ways that can be useful to water-resource managers. Although no one model is the correct model, the results of multiple models can be evaluated in terms of the decision being made and the probability of a given outcome from each model.  相似文献   
72.
73.
74.
Butler JJ  Zhan X  Zlotnik VA 《Ground water》2007,45(2):178-186
The impact of ground water pumping on nearby streams is often estimated using analytic models of the interconnected stream-aquifer system. A common assumption of these models is that the pumped aquifer is underlain by an impermeable formation. A new semianalytic solution for drawdown and stream depletion has been developed that does not require this assumption. This solution shows that pumping-induced flow (leakage) through an underlying aquitard can be an important recharge mechanism in many stream-aquifer systems. The relative importance of this source of recharge increases with the distance between the pumping well and the stream. The distance at which leakage becomes the primary component of the pumping-induced recharge depends on the specific properties of the aquifer, aquitard, and streambed. Even when the aquitard is orders of magnitude less transmissive than the aquifer, leakage can be an important recharge mechanism because of the large surface area over which it occurs. Failure to consider aquitard leakage can lead to large overestimations of both the drawdown produced by pumping and the contribution of stream depletion to the pumping-induced recharge. The ramifications for water resources management and water rights adjudication can be significant. A hypothetical example helps illustrate these points and demonstrates that more attention should be given to estimating the properties of aquitards underlying stream-aquifer systems. The solution presented here should serve as a relatively simple but versatile tool for practical assessments of pumping-induced stream-aquifer interactions. However, this solution should not be used for such assessments without site-specific data that indicate pumping has induced leakage through the aquitard.  相似文献   
75.
76.
77.
78.
79.
The biogeochemistry of Tapong Bay, one of the major lagoons in southern Taiwan, was studied from 1999 to 2004, encompassing a period in 2003 in which aquaculture activities were terminated and the associated structures removed. Removal of the maricultural structures resulted in the reduction of the mean time for water exchange time in Tapong Bay from about 10+/-2d to 6+/-2d. The annual mean concentration of measured nutrients (DIN, DIP and DSi) also decreased significantly, likely due to improved water exchange, ceased feeding and increased biological utilization. An overall high primary production was maintained and likely to be constrained by temperature, light availability and turbidity rather than by abundant nutrients throughout the study period. The change in stoichiometric ratios among inorganic and organic nutrients (C/N, Si/N, N/P) may be attributed to the shift of plankton community between the two periods. The annual mean of Delta POC/Delta PON was 8.1, a little bit larger than that (7.3) before removal, also possibly resulting from the shift of planktonic community (from diatom-dominated to flagellate-dominated and increase of total phytoplankton and zooplankton) and removal of periphyton and oysters. The Tapong Bay shows a 37% increase (from 5.6 to 7.7 mol C m(-2)yr(-1)) in net ecosystem production (NEP) after structure removal, although the increase was not statistically significant. The change in environmental conditions has therefore influenced profoundly the carbon and nutrient biogeochemical processes and budgets in the semi-enclosed ecosystem.  相似文献   
80.
Oysters Crassostrea rhizophorae and Crassostrea gigas were kept for fourteen days at four sites in S?o José, SC, Brazil, chosen according to a sewage discharge contamination gradient. Enzymatic activities of CAT, GST, G6PDH and GR were evaluated in gills and digestive glands. Higher CAT activity was observed in tissues of C. rhizophorae in response to sewage contamination possibly indicating peroxisome proliferation induction. C. gigas showed elevated G6PDH activity in digestive gland, and GR in gills, after domestic sewage exposure. In conclusion, C. rhizophorae and C. gigas showed different biochemical responses after in situ exposure to domestic sewage. However, C. rhizophorae showed more significant changes in CAT suggesting that this organism could be a better monitor to this kind of effluent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号