Major and trace element and Sr, Nd and Pb isotope analyses are presented for thirteen olivine-melilitites from Namaqualand, South Africa. Major element variations are consistent with derivation from carbonated garnet-peridotite at depths of at least 100 km and trace element abundances indicate melt fractions of 4%. Ubiquitous negative K anomalies and low, buffered K2O concentrations are interpreted to reflect the effect of residual phlogopite during melting. It is suggested that phlogopite stability and low melt potassium saturation concentrations are enhanced by high CO2/(CO2 + H2O) conditions. Residual phlogopite can also account for low measured Rb/Sr, Ba/Sr and Th/U ratios in the melilitites. REE abundances are controlled by residual garnet and hence Sm/Nd ratios are low (0.13–0.18). U/Pb ratios vary from 0.05 to 5 and are a function of Pb concentration which is in turn controlled by residual Pb-rich phase (probably sulphide). Nd and Sr isotopes are comparable with OIB from St. Helena, although two samples extend to higher 87Sr/86Sr ratios. Present day Pb isotopes are much more variable and partly reflect radiogenic growth since emplacement as a result of the highly variable U/Pb ratios.
Many of the trace element characteristics of the melilitites are distinct from those of within-plate potassic magmas despite both being derived from phlogopite-bearing, enriched mantle source regions. This can be attributed to the depth at which source enrichment occurred and the subsequent control exerted by phlogopite and carbonate during melting. In contrast to melilitites, potassic magmas are derived from shallower depths under low CO2/(CO2 + H2O) conditions and at higher temperatures at which phlogopite melts more readily.
The incompatible element ratios of the melilitites are also similar to those both observed in HIMU ocean island basalts (OIB) and inferred for HIMU OIB source regions from isotope variations (viz, low Sm/Nd, Rb/Sr, K/Nb, Th/U and high U/Pb and Ce/Pb). It is suggested that HIMU OIB's may be derived from sources that have been subject to enrichment by a melt generated in the presence of residual phlogopite. 相似文献
Geotectonics - The Urf Al-Mahib area, located to the southern part of the Eastern Desert (SED) of Egypt, is covered mainly by juvenile Neoproterozoic crust and Nubian sandstones. Field... 相似文献
The decadal variation in the length of day and in the Earth's magnetic field is analyzed by empirical mode decomposition (EMD). The existence of a periodicity of about 60-years in the Earth's angular velocity has often been inferred and is confirmed here, with a new estimate of approximately 62 years. The existence of a similar periodicity in the geomagnetic field has been controversial. From the time series analyses presented here of the magnetic declination at 10 observatories, it is concluded that a geomagnetic periodicity of about 62?±?3 years does exist. A similar analysis of the magnetic inclination at five observatories gives a period of 58?±?5 years. The declination data from four observatories is found to correlate with the length of day signal, with a correlation coefficient of approximately 0.6. 相似文献
The Huanghe (Yellow River) discharges extremely high suspended sediment concentrations (25 to 220 g/l) which favor sustained hyperpycnal plumes (underflows). Observations of weakly hyperpycnal unchannelized plumes and indirect evidence of strongly hyperpycnal channelized underflows over the delta front indicate the importance of these modes of sediment dispersal. The weakly hyperpycnal plumes occupy the entire water column over the shallow (<5 m) delta top. From a pronounced front near the break in slope at about 5 m depth, they descend over the delta-front slope as wide-spread underflows. Evidence of strongly hyperpycnal underflows was shown from subaqueous valleys partly filled with low-density mud. 相似文献
Joint wavelet analysis of complete and downsampled series of paleomagnetic and petromagnetic characteristics of rocks in the Matuyama-Jaramillo transitional zone in the Adzhidere section is used to extract paleomagnetic data whose variations are associated with the geomagnetic field alone and data correlating with variations in petromagnetic parameters. It supposed that this correlation can be caused by an external factor affecting weak variations in the magnetic field and climatic changes reflected in the composition and amount of the ferromagnetic fraction in rocks. Preliminary data are obtained for the characteristic times of field variations at the time of accumulation of rocks in the transitional zone. 相似文献
The Burpala alkaline massif is a unique geological object. More than 50 Zr, Nb, Ti, Th, Be, and REE minerals have been identified in rare-metal syenite of this massif. Their contents often reach tens of percent, and concentrations of rare elements in rocks are as high as 3.6% REE, 4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th, and 0.1% U. Geological and geochemical data show that all rocks in the Burpala massif are derivatives of alkaline magma initially enriched in rare elements. These rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite. The extreme products of magma fractionation are rare-metal pegmatites, apatite-fluorite rocks, and carbonatites. The primary melts were related to the enriched EM-2 mantle source. The U-Pb zircon ages of pulaskite (main intrusive phase) and rare-metal syenite (vein phase) are estimated at 294 ± 1 and 283 ± 8 Ma, respectively. The massif was formed as a result of impact of the mantle plume on the active continental margin of the Siberian paleocontinent. 相似文献
Near-surface geophysical methods are commonly used to solve a wide class of geological, engineering and environmental problems. In this study, a geoelectrical survey was performed to investigate an alluvial aquifer. The study area is located in the southwest of the Çubukluda? graben, situated in the south of ?zmir, Turkey. The geophysical studies included the electrical resistivity imaging and self-potential (SP) methods. The resistivity data were acquired along eight profiles in the northern part of the study area by a Wenner-Schlumberger electrode configuration and the data processing was achieved by a tomographic inversion technique. The SP data were collected by gradient technique along 16 profiles. Total field values were calculated for each profile by addition of the successive gradient values, then a total field SP map was obtained. The water-saturated zone in the northern part of the study area was clearly revealed by the electrical resistivity imaging and the SP survey yielded useful information on the subsurface fluid movement. 相似文献