Predicting the fate of the injected CO2 is crucial for the safety of carbon storage operations in deep saline aquifers: especially the evolution of the position, the spreading and the quantity of the mobile CO2 plume during and after the injection has to be understood to prevent any loss of containment. Fluid flow modelling is challenging not only given the uncertainties on subsurface formation intrinsic properties (parameter uncertainty) but also on the modelling choices/assumptions for representing and numerically implementing the processes occurring when CO2 displaces the native brine (model uncertainty). Sensitivity analysis is needed to identify the group of factors which contributes the most to the uncertainties in the predictions. In this paper, we present an approach for assessing the importance of model and parameter uncertainties regarding post-injection trapping of mobile CO2. This approach includes the representation of input parameters, the choice of relevant simulation outputs, the assessment of the mobile plume evolution with a flow simulator and the importance ranking for input parameters. A variance-based sensitivity analysis is proposed, associated with the ACOSSO-like meta-modelling technique to tackle the issues linked with the computational burden posed by the use of long-running simulations and with the different types of uncertainties to be accounted for (model and parameter). The approach is tested on a potential site for CO2 storage in the Paris basin (France) representative of a project in preliminary stage of development. The approach provides physically sound outcomes despite the challenging context of the case study. In addition, these outcomes appear very helpful for prioritizing the future characterisation efforts and monitoring requirements, and for simplifying the modelling exercise. 相似文献
Phytoplankton patchiness, as expressed by community composition and size distribution, during the rainy season in the Langat River estuary (Malaysia) is described. Four sites in the estuary were sampled on two different occasions. The sampling area covered a stretch of the river from upstream to downstream of aquaculture activities (shrimp farms). Water samples from a shrimp farm outlet were also analyzed for nutrient and phytoplankton content. Differences in community structure between stations were found by means of multivariate procedures. Genera composition and total biomass were related to environmental factors, revealing salinity, light, and nutrients as important explaining factors. Elevated phytoplankton biomass and total phosphorus concentration, as well as lower inorganic nitrogen: phosphorus ratios, were found downstream of the shrimp farming activities. The size distribution spectrum of the phytoplankton population downstream of the shrimp farms was significantly different from that at the other stations but not different than that found in the sampled effluent from the shrimp farms, where phytoplankton biomass was also high. Twenty-two of the 24 recorded genera from the shrimp farm outlet were also found downstream of the farming activities. A number of different environmental factors potentially alter conditions for phytoplankton in the lower reaches of the estuary as compared to the upper regions. A cause and effect relationship explaining the differences noted between the upper and lower reaches of the estuary cannot be established. This study suggests that nutrient enrichment from the shrimp farming activities is of a magnitude that may contribute to the phytoplankton community changes observed in the lower reaches of the estuary. 相似文献
Overflows play an important role in the downwelling limb of the oceanic thermohaline circulation. In light of the recognition that some overflows are not homogenous but exhibit a vertical density structure, and details of topography influence the pathways of some overflows, the impact of topographic roughness on the product property distribution is explored using the 3D non-hydrostatic spectral element model Nek5000. Numerical experiments are carried out by varying bottom roughness amplitude and ambient stratification parameters, in a regime where equilibrated product water masses are formed in a non-rotating environment.Our main finding is that bottom roughness can influence the overflow product distribution such that the highest salinity classes are removed and neutral buoyancy level is attained higher up in the stratified ambient water column. It is also shown that the form drag coefficients in overflows over rough bottom can be much larger than the skin drag coefficient over smooth bottom. To our knowledge, form drag has never been measured in oceanic overflows. As such, these numerical experiments imply that such measurements would be useful for a better understanding of overflow dynamics. It is also found that the ratio of source and product overflow mass transports is robust to changes in bottom roughness. This appears to happen because the distribution of entrainment is totally different in the case of rough bottom. Entrainment tends to initiate earlier (due to vertical motion induced by topography) and terminate earlier (due to development of form drag) than that over smooth topography. 相似文献
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the
formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different
ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in
these conditions the reduction of Mn and Fe oxides and SO42− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The
chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic
calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and
Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In
the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling
Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of
electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation
of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide
(AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0). 相似文献
Compound specific stable isotope analysis (CSIA) has been established as a viable tool for proving, characterizing and assessing degradation of organic pollutants within contaminated aquifers. The fractionation of stable isotopes during contaminant degradation leads to observable shifts in stable isotope ratios which can serve as an indicator for in situ pollutant degradation and allow for a quantitative assessment by means of the so-called Rayleigh (distillation) equation.This review highlights the recent developments of the Rayleigh equation approach for quantifying in situ degradation of organic pollutants in contaminated aquifers. The advantages and limitations of the Rayleigh equation approach are discussed and suggestions for improvements are given. Concepts are provided to estimate the uncertainty due to errors or variability of input parameters and how to deal with such uncertainty. Moreover, the applicability of the Rayleigh equation approach is evaluated regarding the heterogeneity and complexity of groundwater systems. For such systems, the review discusses the relevance of non-destructive processes, which affect the concentration (e.g., dispersive mixing) and potentially also the stable isotope ratio of contaminants (e.g., sorption, volatilization), and the resulting implications for the Rayleigh equation approach. 相似文献
Flows of partially saturated grain-fluid mixtures over complex curved topography are commonly observed in nature. However, comprehensive understanding of the physics behind them is to date out of reach. To investigate their dynamic process, a two-layer approach is proposed, in which the fluid-saturated granular layer is overlaid by the pure granular material. More specifically, the lower layer is described by a two-phase mixture theory of density preserving solid and fluid constituents. For the upper layer, the single-phase granular mass is treated as a frictional Coulomb-like continuum, and the dilation effect and the influence of the interstitial air are ignored. The capillarity effects and grains-size segregation are not considered in both the layers. The lower and upper layers interact at an interface which is a material surface for the fluid phase, but across which the mass exchange for the granular phase may take place. The granular mass exchange across the layer interface is parameterized by an entrainment type postulate. In addition, the classical jump conditions are employed to connect both layers at the interface dynamically. Furthermore, we perform the depth-averaged technique for the saturated grain-fluid mixture lower layer and the pure granular upper layer, respectively, to simplify the governing equations established. It is demonstrated that the resulting model equations can be reduced to most of the existing single-layer pure granular flow models and saturated two-phase single-layer debris flow models. Numerical solutions demonstrate that the present two-layer model can describe flows of partially saturated grain-fluid mixtures and the transition process of a saturated grain-fluid mixture into an under-saturated state. 相似文献
Community Geography offers researchers, community groups, and students opportunities to engage in action oriented applied geographical research. Creating and sustaining these research programs can be challenging, programs can involve many partners from both academic and the community, have different goals and purposes, and utilize a variety of methods to perform research. In this paper we offer a framework of three primary overarching principles for implementing CG projects; (1) Who, (2) Why, and (3) How. (1) “Who” describes who is involved in CG, including researchers, community partners, academic institutions, (2) “Why” describes the justifications and benefits of taking this approach. (3) “How” explains how CG borrows methodologies from many disciplines within geography and beyond. Our examples are not exhaustive; rather, they serve as starting points to inspire researchers interested in CG.
Natural Hazards - This contribution explores the conceptual and empirical linkages between population dynamics and natural hazard risk management (NHRM). Following a review of the international... 相似文献
The survival chance of epiphytic orchids today not only depends on the natural site conditions required by the orchids but also on anthropogenic changes in site conditions.This study answers two questions:(1) What is the ecological niche of the different epiphytic orchid species?(2) What are the ecological factors that threaten epiphytic orchid's population under anthropogenic disturbances? Our study area was the Kathmandu valley,Nepal,with its subtropical forest.We established 156 systematically selected sampling points in the Kathmandu area covering different types of ecosystems under human impacts such as densely populated area,agricultural land,mixed agricultural and settled area,old tree patches,and a natural forest in a national park.The ecological niche of the orchid species was analyzed with a principal component analysis(PCA).The correlations between the different site factors were statistically significant.Spearman's rank correlation matrices showed that the variables land-use intensities with altitude,and height with diameter in breast height(dbh) of host had the highest significant positive correlation coefficient(0.67 and 0.64 respectively).On the other hand,host bark p H and altitude as well as land use had a significantly strong negative correlation coefficient(-0.80 and-0.61,respectively).Different epiphytic orchid species interact differently with the given set ofenvironmental factors:for occurrence of Vanda cristata there is no single environmental factor of special influence,while for Rhynchostylis retusa high bark p H and high light availability are important.First two axis of the PCA explained more than 50% of the total variance.Most orchid species occupy a specific,narrow niche in this ecological space.The main causes of anthropogenic influence of orchid population in the Kathmandu Valley are loss of adequate host trees(species and size) and increasing air pollution,resulting in increasing host bark p H. 相似文献
Analysis of the data from Giotto's Dust Impact Detection System experiment (DIDSY) is presented. These data represent measurement of the size of dust grains incident on the Giotto dust shield along its trajectory through the coma of comet P/Halley on 1986 March 13/14. First detection occurred at some 287000 km distance from the nucleus on the inbound leg; the majority of the DIDSY subsystems remained operational after closest approach (604 km) yielding the last detection at about 202000 km from the nucleus. In order to improve the data coverage (and especially for the smallest grains, to approximately 10(-19) kg particle mass), data from the PIA instrument has been combined with DIDSY data. Flux profiles are presented for the various mass channels showing, to a first approximation, a 1/R2 flux dependence, where R is the distance of the detection point from the cometary nucleus, although significant differences are noted. Deviations from this dependence are observed, particularly close to the nucleus. From the flux profiles, mass and geometrical area distributions for the dust grains are derived for the trajectory through the coma. Groundbased CCD imaging of the dust continuum in the inner coma at the time of encounter is also used to derive the area of grains intercepted by Giotto. The results are consistent with the area functions derived by Giotto data and the low albedo of the grains deduced from infrared emission. For the close encounter period (-5 min to +5 min), the cumulative mass distribution function has been investigated, initially in 20 second periods; there is strong evidence from the data for a steepening of the index of the mass distribution for masses greater than 10(-13) kg during passage through dust jets which is not within the error limits of statistical uncertainty. The fluences for dust grains along the entire trajectory is calculated; it is found that extrapolation of the spectrum determined at intermediate masses (cumulative mass index alpha = 0.85) is not able to account for the spacecraft deceleration as observed by the Giotto Radio Science Experiment and by ESOC tracking operations. Data at large masses (>10(-8) kg) recently analysed from the DIDSY data set show clear evidence of a decrease in the mass distribution index at these masses within the coma, and it is shown that such a value of the mass index can provide sufficient mass for consistency with the observed deceleration. The total particulate mass output from the nucleus of comet P/Halley at the time of encounter would be dependent on the maximum mass emitted if this change in slope observed in the coma were also applicable to the emission from the nucleus; this matter is discussed in the text. The flux time profiles have been converted through a simple approach to modeling of the particle trajectories to yield an indication of nucleus surface activity. There is indication of an enhancement in flux at t approximately -29 s corresponding to crossing of the dawn terminator, but the flux detected prior to crossing of the dawn terminator is shown to be higher than predicted by simple modelling. Further enhancements corresponding to jet activity are detected around +190 s and +270 s. 相似文献