首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  国内免费   3篇
大气科学   6篇
地球物理   6篇
地质学   17篇
海洋学   9篇
天文学   5篇
自然地理   3篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2011年   2篇
  2010年   3篇
  2007年   2篇
  2005年   5篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有46条查询结果,搜索用时 828 毫秒
31.
Magnetic merging is a primary means for coupling energy from the solar wind into the magnetosphere–ionosphere system. The location and nature of the process remain as open questions. By correlating measurements from diverse locations and using large-scale MHD models to put the measurements in context, it is possible to constrain our interpretations of the global and meso-scale dynamics of magnetic merging. Recent evidence demonstrates that merging often occurs at high latitudes in the vicinity of the cusps. The location is in part controlled by the clock angle in the interplanetary magnetic field (IMF) YZ plane. In fact, BY bifurcates the cusp relative to source regions. The newly opened field lines may couple to the ionosphere at MLT locations of as much as 3 hr away from local noon. On the other side of noon the cusp may be connected to merging sites in the opposite hemisphere. In fact, the small convection cell is generally driven by opposite hemisphere merging. BX controls the timing of the interaction and merging sites in each hemisphere, which may respond to planar features in the IMF at different times. Correlation times are variable and are controlled by the dynamics of the tilt of the interplanetary electric field phase plane. The orientation of the phase plane may change significantly on time scales of tens of minutes. Merging is temporally variable and may be occurring at multiple sites simultaneously. Accelerated electrons from the merging process excite optical signatures at the foot of the newly opened field lines. All-sky photometer observations of 557.7 nm emissions in the cusp region provide a “television picture” of the merging process and may be used to infer the temporal and spatial variability of merging, tied to variations in the IMF.  相似文献   
32.
Enriched concentrations of vanadium and nickel have been noted in a variety of naturally occurring organic substances including crude oils, asphalts, and organic matter in some sedimentary rocks. Vanadium and nickel concentrations in bitumens extracted from a variety of organic sedimentary rock types of different geological ages and geographical areas range from less than 0.2 to 4760 ppm and less than 7 to 1240 ppm, respectively. Vanadium concentrations showed a polymodal frequency distribution, while nickel concentrations showed a near-normal frequency distribution. The concentrations of these two metals showed no significant correlations with bitumen content, organic carbon content, or proportionality between bitumen and organic contents. Enriched vanadium and nickel concentrations greater than 100 ppm are only observed in bitumens that are associated with Type II and Type I kerogens. Conversely, bitumens associated with Type III kerogens contained vanadium and nickel concentrations less than 100 ppm.The high stability of vanadium and nickel in crude oils, asphalts, and bitumens suggest that they occur in tetrapyrrole complexes. These complexes may occur as free molecules or assimulated subunits in macromolecules because of their availability in anaerobic systems, small atomic radii, and favorable electron configurations. The potential for an organic sediment to be enriched in these two metals depends upon the amount of tetrapyrroles preserved in its organic matter. Tetrapyrrole preservation preferentially decreases in organic matter as exposure time to aerobic conditions increases. The potential for vanadium and nickel enrichment is therefore the highest in organic matter derived from algae that encountered anaerobic conditions early in their depositional history. Metallation of tetrapyrrole complexes appears to occur within sediments prior to their lithification, and interstitial waters are the most likely source for enriched concentrations of vanadium and nickel. The amount of metal enrichment in a sediment depends upon the diffusion of metal cations from its overlying water body, and this source is only effective as long as the sediment system remains open. The complete metallation of tetrapyrroles is most favorable under conditions of slow sedimentation rates, which would allow open sediment systems to be maintained for long durations.  相似文献   
33.
Throughout the summers of 1985 and 1986 a small (2–3 μm diameter), previously underscribed chrysophyte bloomed monospecifically (>109 cells 1?1) in Long Island embayments. The bloom colored the water dark brown, decimated eelgrass beds through decreased light penetration and caused starvation (tissue weight loss) and recruitment failure of commercially important bay scallop populations. These perturbations portend longterm changes in subtidal communities Similar and concurrent blooms in bays of Rhode Island and New Jersey suggest a meteorological component of the environmental conditions promoting bloom formation. Culture experiments with isolates of the microalga suggest the presence of stimulatory growth factors in the bloom seawater. *** DIRECT SUPPORT *** A01BY040 00002  相似文献   
34.
Studies have shown that many chemically-reactive contaminants become associated with fine particles in coastal waters and that the rate, patterns, and extent of contaminant accumulation within estuarine systems are extremely variable. In this paper, we briefly review our findings concerning the accumulation patterns of contaminants in several estuarine systems along the eastern coastline of the United States, and have applied a well-established concept in geology, that is “an equilibrium profile,” to explain the observed large variations in these patterns. We show that fine-particle deposition is the most important factor affecting contaminant accumulation in estuarine areas, and that accumulation patterns are governed by physical processes acting to establish or maintain a sediment surface in dynamic equilibrium with respect to sea level, river discharge, tidal currents, and wave activity. Net long-term particle and particle-associated contaminant accumulations are negliglible in areas where the sediment surface has attained “dynamic equilibrium” with the hydraulic regime. Contaminant, accumulation in these areas primarily occurs by the exchange of contaminant-poor sedimentary particles with contaminant-rich suspended particles during physical or biological mixing of the surface sediment. Virtually the entire estuarine particulate and contaminant load bypasses these “equilibrium” areas to accumulate at extremely rapid in relatively small areas that are temporally out of equilibriums as a result of natural processes or human activities. These relatively small areas serve as major sinks for particles from riverine and marine sources, and for biogenic carbon formed in situ within estuaries or on the inner shelf.  相似文献   
35.
An SO2 flux of 1170±400 (1) tonnes per day was measured with a correlation spectrometer (COSPEC) in October and November 1986 from the continuous, nonfountaining, basaltic East Rift Zone eruption (episode 48A) of Kilauea volcano. This flux is 5–27 times less than those of highfountaining episodes, 3–5 times greater than those of contemporaneous summit emissions or interphase Pu'u O'o emissions, and 1.3–2 times the emissions from Pu'u O'o alone during 48A. Calculations based on the SO2 emission rate resulted in a magma supply rate of 0.44 million m3 per day and a 0.042 wt% sulfur loss from the magma upon eruption. Both of these calculated parameters agree with determinations made previously by other methods.  相似文献   
36.
37.
Nitric-perchloride acid, 0.5 M hydrochloric acid, 0.05 M EDTA and neutral ammonium acetate were investigated as extractants for copper in peat samples. Greatest contrast between anomalous and background samples was found with nitric-perchloric acid (‘total’) digestion. EDTA or dilute hydrochloric acid liberated 13–100% of the total copper whereas ammonium acetate removed a maximum of 8%.  相似文献   
38.
Fluid mud accumulation processes in an estuary   总被引:4,自引:0,他引:4  
Fluid mud accumulates as pools and blanket deposits greater than 20 cm thick in channels of the James Estuary. It forms mainly in the turbidity maximum zone, a site of high near-bed concentrations (0.5 to 2 g/liter), intensive resuspension, and fast sedimentation (1 to 8 g/cm2/yr). Accumulation is promoted by stratification of interfacial fluid and pore water, by the pseudoplastic behavior of the mud with relatively high viscosity at low shear rates, by the high suspended sediment concentrations, and by resultant rapid-settling flux relative to the consolidation rate in the hindered state.This is Contribution 1211 from the Virginia Institute of Marine Science, Gloucester Point, VA 23062.  相似文献   
39.
40.
Kyanite Mining Corporation, located in Dillwyn, Virginia has been in operation for over 50 years and their local operation is the largest kyanite mine in the world. As part of the processing at this location, a magnetic separate is generated and a minimum estimation of 3.57 million tons of waste has accumulated. Currently no use for the magnetic separate has been identified. We investigated eight representative samples of the magnetic mine waste which varied in color from a dark tan to black, to determine if the waste could be recycled as an ore or could be used as an environmental media. Mineralogical investigations indicate the composition of the magnetic mine waste is dominated by magnetite, kyanite, lesser amounts of hematite and charcoal. Magnetite occurs as fine grained crystals and as inclusions in kyanite. Hematite occurs largely as botryoidal textures, as discrete grains, and as coatings on kyanite grains. Fe-oxide spheres ranging in diameter from approximately 5–100 μm are common and may compose up to 10% in some samples. Titanium dioxide was rarely observed as coatings on silicate mineral grains. Energy dispersive spectroscopy analysis on magnetite crystals indicates they have end-member compositions. Bulk property investigations indicate that grain size distributions of samples are primarily unimodal with 20–40% of material being between 0.600 and 0.250 mm. Hydraulic conductivity values of samples investigated vary between 0.0036 and 0.0077 cm/s and are broadly consistent with those expected of sands with similar grain size distributions. In addition to the magnetic waste stream a light blue, water soluble, amorphous Cu sulfate occurs as a coating on surfaces of boulders. The coating is composed of rounded interlocking particles 5–60 μm in diameter. This material is of some environmental concern for freshwater invertebrates, but can be managed using sorption media. Hyperspectral data were gathered of the magnetic separate, kyanite ore samples, and the light blue Cu sulfate. The signatures of the kyanite ore, the blue mineral coating, and a mixture of the two provide spectral fingerprints that an imaging spectrometer could exploit for rapid detection and subsequent environmental monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号