首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25405篇
  免费   478篇
  国内免费   263篇
测绘学   624篇
大气科学   1946篇
地球物理   5420篇
地质学   8993篇
海洋学   2045篇
天文学   5375篇
综合类   39篇
自然地理   1704篇
  2020年   136篇
  2019年   127篇
  2018年   290篇
  2017年   266篇
  2016年   414篇
  2015年   299篇
  2014年   423篇
  2013年   1192篇
  2012年   506篇
  2011年   792篇
  2010年   646篇
  2009年   915篇
  2008年   845篇
  2007年   802篇
  2006年   836篇
  2005年   716篇
  2004年   756篇
  2003年   713篇
  2002年   724篇
  2001年   592篇
  2000年   604篇
  1999年   582篇
  1998年   551篇
  1997年   568篇
  1996年   473篇
  1995年   461篇
  1994年   446篇
  1993年   415篇
  1992年   388篇
  1991年   341篇
  1990年   387篇
  1989年   299篇
  1988年   345篇
  1987年   379篇
  1986年   329篇
  1985年   487篇
  1984年   527篇
  1983年   531篇
  1982年   427篇
  1981年   419篇
  1980年   437篇
  1979年   383篇
  1978年   399篇
  1977年   346篇
  1976年   378篇
  1975年   341篇
  1974年   381篇
  1973年   367篇
  1972年   234篇
  1971年   186篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
391.
The Siljan Ring is a 362-Ma-old impact structure formed in 1700-Ma-old I-type granites. A 6.8-km-deep borehole provides a vertical profile through granites and isolated horizontal diabase sills. Fluid-inclusion thermometry, and oxygen-isotope compositions of vein quartz, granite, diabase, impact melt, and pseudotachylite, reveal a complex history of fluid activity in the Siljan Ring, much of which can be related to the meteorite impact. In granites from the deep borehole, 18O values of matrix quartz increase with depth from near 8.0 at the surface to 9.5 at 5760 m depth. In contrast, feldspar 18O values decrease with depth from near 10 at the surface to 7.1 at 5760 m, forming a pattern opposite to the one defined by quartz isotopic compositions. Values of 18O for surface granites outside the impact structure are distinct from those in near-surface samples from the deep borehole. In the deep borehole, feldspar coloration varies from brick-red at the surface to white at 5760 m, and the abundances of crack-healing calcite and other secondary minerals decrease over the same interval. Superimposed on the overall decrease in alteration intensity with depth are localized fracture zones at 4662, 5415, and 6044 m depth that contain altered granites, and which provided pathways for deep penetration of surface water. The antithetic variation of quartz and feldspar 18O values, which can be correlated with mineralogical evidence of alteration, provides evidence for interaction between rocks and impact-heated fluids (100–300° C) in the upper 2 km of the pluton. Penetration of water to depths below 2 km was restricted by a general decrease in impact-fracturing with depth, and by a 60-m-thick diabase sill at 1500 m depth that may have been an aquitard. At depths below 4 km in the pluton, where water/rock ratios were low, oxygen isotopic compositions preserve evidence for limited high-temperature (>500° C) exchange between alkali feldspar and fluids. The high-temperature exchange may have been a post-impact event involving impact-heated fluids, or a post-magmatic event.  相似文献   
392.
The Ashland pluton is a calc-alkaline plutonic complex thatintruded the western Paleozoic and Triassic belt of the KlamathMountains in late Middle Jurassic time. The pluton comprisesa series of compositionally distinct magma pulses. The oldestrocks are hornblende gabbro and two-pyroxene quartz gabbro withinitial 87Sr/86Sr = 0{dot}7044, 18O = 8{dot}7%, and REE patternswith chondrite normalized La/Lu = 7. These units were followedby a suite of tonalitic rocks (LaN/LuN = 7) and then by a suiteof K2O- and P2O5 rocks of quartz monzodioritic affinity (LaN/LuN= 13–21; LaN/SmN = 2{dot}4–3{dot}) The quartz monzodioriticrocks were then intruded by biotite granodiorite and granitewith lower REE abundances but more fractionated LREE(LaN/LuN= 13–19; LaN/SmN = 4{dot}3–6 and they, in turn,were host to dikes and bosses of hornblende diorite. The latestintrusive activity consisted of aplitic and granitic dikes.Combined phase equilibria and mineral composition data, indicateemplacement conditions of approximately Ptotal = 2{dot}3kb,PH2O between 1{dot}5 and 2{dot}2 kb, and fO2 between the nickel-nickeloxide and hematite-magnetite buffers. Successive pulses of magma display increasing SiO2 togetherwith increasing 18O and decreasing initial 87Sr/86Sr. The isotopicdata are consistent with either (1) combined fractional crystallizationof andesitic magma and concurrent assimilation of crustal materialcharacterized by low Sr1 and high (18O or, more probably, (2)a series of partial melting events in which sources were successivelyless radiogenic but richer in 18O Each intrusive stage displaysevidence for some degree of crystal accumulation and/or fractionalcrystallization but neither process adequately accounts fortheir compositional differences. Consequently, each stage appearsto represent a distinct partial melting or assimilation event. The P2O5-rich nature of the quartz monzodiorite suite suggestsaccumulation of apatite. However, the suite contains abundantmafic microgranitoid enclaves and most apatite in the suiteis acicular. These observations suggest that magma mixing affectedthe compositional variation of the quartz monzodiorite suite.Mass balance calculations are consistent with a simple mixingprocess in which P2O5-rich alkalic basalt magma (representedby the mafic microgranitoid enclaves) was combined with a crystal-poorfelsic magma (represented by the tonalite suite), yielding aquartz monzodioritic magma that then underwent differentiationby crystal fractionation and accumulation.  相似文献   
393.
Positron-electron pair radiation is examined as a mechanism that could be responsible for the impulsive phase emission of the 5 March, 1979 transient. Synchrotron cooling and subsequent annihilation of the pairs can account for the energy spectrum, the very high brightness, and the 0.4 MeV feature observed from this transient, whose source is likely to be a neutron star in the supernova remnant N49 in the Large Magellanic Cloud. In this model, the observed radiation is produced in the skin layer of a hot, radiation-dominated pair atmosphere, probably confined to the vicinity of the neutron star by a strong magnetic field. The width of this layer is only about 0.1 mm. In this layer, 1012 generations of pairs are formed (by photon-photon collisions), cooled and annihilated during the 0.15 s duration of the impulsive phase. The very large burst energy implied by the distance of the LMC, and its very rapid release, are unsolved problems. We mention, nonetheless, the possibility of neutron star vibrations, which could transport the energy coherently to the surface, heat the atmosphere mechanically to a hot, pair-producing temperature, and have a characteristic damping time roughly equal to the duration of the impulsive phase.Paper presented at the Symposium on Cosmic Gamma-Ray Bursts held at Toulouse, France, 26–29 November, 1979.  相似文献   
394.
Observations with the French (L.P.S.P.) experiment on board OSO-8 of a sunspot and nearby plage region are described. The behaviour of the emission cores of the Ca II H and K and Mg II h and k resonance lines is very similar and the correspondence in intensity between the four lines persists in all observed features. In contrast, the Lyman lines show little correlation with the other lines. Their emission regions appear broader in the spectroheliograms than the underlying sunspot structure and must not necessarily possess a counterpart in lower layers. From the central intensity of L above the umbra an electron density of 4.3 × 1010 cm-3 n e * 2.3 × 1011 cm-3 at 20 000 K is estimated.Mitteilungen aus dem Kiepenheuer-Institut Nr. 186.Stockholm Observatorium, S-13300 Saltsjöbaden, Sweden.Laboratoire de Physique Stellaire et Planétaire, CNRS, P.O. Box 10, F-91370 Verrières-le-Buisson, France.  相似文献   
395.
The formation and eruption of active region filaments is supposed to be caused by the increase of a concentrated current embedded in the active region background magnetic field of an active region according to the theory of Van Tend and Kuperus (1978).The onset of a filament eruption is due to either changes in the background magnetic field or the increase of the filament current intensity. Both processes can be caused by the emergence of new magnetic flux as well as by the motion of the photospheric footpoints of the magnetic field lines. It is shown that if the background field evolves from a potential field to a nearly force-free field the vertical equilibrium of the current filament is not affected, but large forces are generated along the filament axis. This is identified as the cause of filament activation and the increase in filament turbulence during the flare build-up phase. Depending on the evolution of the background field and the current filament, two different scenarios for flare build-up and filament eruption are distinguished.This work was done while one of the authors (M.K.) was participating in the CECAM workshop on Physics of Solar Flares held at Orsay, France, in June 1979.  相似文献   
396.
S. W. Kahler 《Solar physics》1981,71(2):337-347
Skylab X-ray images of the early phases of six active region transient brightenings were compared with simultaneous H images to study the spatial relationships between filaments and the X-ray brightenings. When the X-ray loops were roughly perpendicular to the axes of the H filaments, the filaments did not disappear. X-ray loops which appeared nearly parallel to the filaments were generally associated with the disappearances of those filaments. It is suggested that the perpendicular loops correspond to the class I X-ray flares of Pallavicini et al. (1977) while the parallel loops are the early phases of their class II flares characterized in the decay phases by arcades of large loops with low energy densities. Both kinds of X-ray flares can be associated with impulsive phases.  相似文献   
397.
We have extended our previous study of coronal holes, solar wind streams, and geomagnetic disturbances from the declining phase (1973–1975) of sunspot cycle 20 through sunspot minimum (1976) into the rising phase (1977) of cycle 21. Using daily He I 10830 Å spectroheliograms and photospheric magnetograms, we found the following results:
  1. As the magnetic field patterns changed, the solar atmosphere evolved from a structure having a few, large, long-lived, low-latitude coronal holes to one having numerous small, short-lived, high-latitude holes (in addition to the polar holes which persisted throughout this 5-year interval).
  2. The high-latitude holes recurred with a synodic rotation period of 28–29 days instead of the 27-day period already known to be characteristic of low-latitude holes.
  3. During 1976–1977 many coronal holes were intrinsically ‘weak’ in the sense that their average intensities did not differ greatly from the intensity of their surroundings. Such low-contrast holes were rare during 1973–1975.
An updated Bartels display of the occurrence of holes, wind speed, and geomagnetic activity summarizes the evolution of their characteristics and interrelations as the sunspot cycle has progressed. Long-lived, low-latitude holes have become rare but remain terrestrially effective. The more common high-latitude holes are effective only when the Earth lies at a relatively high heliographic latitude in the same solar hemisphere.  相似文献   
398.
The complex pattern of biological accretion, internal sedimentation, early lithification, and biological destruction, that characterizes modern reefs and many fossil reefs has been recognized in archaeocyathid-rich patch reefs of Lower Cambrian age in the Forteau Formation, southern Labrador. Patch reefs occur as isolated masses or complex associations of many discrete masses of archaeocyathid-rich limestone and skeletal lime sands, surrounded by well-bedded skeletal limestones and shales. Each reef is composed of many loafshaped mounds stacked on top of one another. The limestone of each mound comprises archaeocyathids and Renalcis or Renalcis-like structures in a matrix of argillaceous lime mud rich in sponge spicules, trilobite and salterellid skeletons. Numerous growth cavities roofed by pendant Renalcis-like organisms and Renalcis are partially to completely filled with geopetal sediment indicating that much of the matrix was deposited as internal sediment. Two stages of diagenetic alteration are recognized: (1) syn-depositional, which affected only the reefs, and (2) post-depositional, which affected both reefs and inter-reef sediments. On the sea floor reef sediments were pervasively cemented and fibrous carbonate was precipitated in intraskeletal and growth cavities. These limestones and cements as well as archaeocyathid skeletons, were subsequently bored by endolithic organisms. Later post-depositional subaerial diagenesis resulted first in dissolution of certain skeletons and precipitation of calcite cement above the water table, followed by extensive precipitation of pore-filling calcite below the water table. These carbonate reefs are similar in structure to the basal pioneer accumulations of much younger lower and middle Palaeozoic reefs. They did not develop into massive ‘ecologic’ reefs because archaeocyathids never developed the necessary large, massive, hemispherical skeletons. This occurrence indicates that reefs developed more or less coincident with, and not long after, the appearance of skeletal metazoans in the Lower Cambrian.  相似文献   
399.
Laboratory spectra of SiO particles of 1 m radius show a broad structureless extinction peak at 9.6m. The wavelength dependence of extinction from SiO, an amorphous silicon oxide, provides a good match to that of interstellar dust.  相似文献   
400.
Mathematical models have been developed which simulate both random and nonrandom thermal cracking of branched and straight-chain hydrocarbons. Application of these models to n-paraffins suggests that thermal cracking alone cannot be the dominant mechanism in formation of the n-paraffin distributions present in crude oils. Application to isoprenoid hydrocarbons indicates that nonrandom cracking could be important in producing the isoprenoid distributions found in oils.Results of the mathematical modeling show that methane formation should, as predicted from energy considerations, be kinetically disfavored. It therefore is likely that substantial quantities of methane are produced from saturated hydrocarbons only under thermal conditions more severe than those under which oil is produced.The mathematical models employed are adaptable for other geochemical applications, such as isotope fractionation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号