首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   4篇
测绘学   1篇
大气科学   24篇
地球物理   21篇
地质学   153篇
海洋学   15篇
天文学   3篇
综合类   1篇
自然地理   34篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   15篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   7篇
  2007年   7篇
  2006年   12篇
  2005年   2篇
  2004年   11篇
  2003年   5篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   10篇
  1996年   12篇
  1995年   2篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   18篇
  1990年   11篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1966年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有252条查询结果,搜索用时 0 毫秒
231.
232.
Kilauea East Rift Zone Magmatism: an Episode 54 Perspective   总被引:1,自引:0,他引:1  
On January 29–30, 1997, prolonged steady-state effusionof lava from Pu'u'O'o was briefly disrupted by shallow extensionbeneath Napau Crater, 1–4 km uprift of the active Kilaueavent. A 23-h-long eruption (episode 54) ensued from fissuresthat were overlapping or en echelon with eruptive fissures formedduring episode 1 in 1983 and those of earlier rift zone eruptionsin 1963 and 1968. Combined geophysical and petrologic data forthe 1994–1999 eruptive interval, including episode 54,reveal a variety of shallow magmatic conditions that persistin association with prolonged rift zone eruption. Near-ventlava samples document a significant range in composition, temperatureand crystallinity of pre-eruptive magma. As supported by phenocryst–liquidrelations and Kilauea mineral thermometers established herein,the rift zone extension that led to episode 54 resulted in mixtureof near-cotectic magma with discrete magma bodies cooled to  相似文献   
233.
234.
235.
The formation of ooids   总被引:5,自引:0,他引:5  
Field and laboratory studies suggest that different types of ooids form during quiet and agitated water conditions. Both types have been synthesized in the laboratory. Quiet water types exhibit a radial orientation of carbonate crystals, whereas in those formed in agitated conditions, a tangential orientation is prevalent. Successful laboratory formation of quiet water ooids was accomplished in supersaturated seawater solutions containing humic acids. Negative results were obtained from strictly inorganic solutions, and from those containing simple amino acids, single proteins, mixtures of proteins or mucopolysaccharides, soil and sediment extracts. Partly successful results were obtained using an organic extract from Bahamian ooids. The organic parameters most important in quiet water ooid formation are molecular weight, the presence of carboxyl groups and an ability to participate in hydrophobic/hydrophilic interactions, all of which are critical to membrane formation. Membranes form concentric shells which act as growth surfaces for carbonate and also induce the periodicity in carbonate precipitation. Ooids exhibiting a tangential orientation of batten-like crystals have been synthesized under conditions of agitation, supersaturation and without the intervention of organic processes during the precipitation. Complete growth may be divided into agitation, resting and sleeping stages In the agitation stage, quartz nuclei induce an inorganic, heterogeneous nucleation from a supersaturated solution, which finally ceases as a result of Mg2+ and possibly H+ poisoning of the carbonate surfaces. No further precipitation occurs until the crystal surfaces are reactivated by removal of Mg2+ and H+ during the resting stage. Following a series of agitation and resting stages, precipitation is inhibited by a degree of poisoning which is not totally removed during the resting stage. For further growth, a new substrate is required and is provided by the development of organic membranes around the grains. This occurs when the grains are buried in the subsurface, the period of organic growth constituting the sleeping stage. Only 2% of an ooid's life is spent growing in the agitated environment, while 95% of its life is spent accreting organic membranes in the subsurface. Our experimental work indicates that ooids of Bahamian type are inorganic precipitates. The tangential arrangement of battens is the result of suspension in an environment where the degree of turbulence is sufficient to induce grain to grain contact of sufficient strength and frequency to inhibit any crystal growth other than tangential. The role of organics is to provide a substrate for further growth after precipitation has slowed to a point when no further accretion is occurring.  相似文献   
236.
237.
Climate change is already occurring in the Arctic and the Arctic Climate Impact Assessment recently concluded that future climate change could be devastating for Inuit. This paper characterises vulnerability to climate change in two Inuit communities in the Canadian territory of Nunavut, focusing on the resource harvesting sector. In both communities, Inuit have demonstrated significant adaptability in the face of current changes in climatic conditions. This adaptability is facilitated by traditional Inuit knowledge, strong social networks, flexibility in resource use, and institutional support. Changing Inuit livelihoods, however, have undermined certain aspects of adaptive capacity and have resulted in emerging vulnerabilities. Global and regional climate projections indicate that climatic conditions which currently pose risks are expected to be negatively affected by future climate change. These projections are not without precedent and analysis of current vulnerability and identification of adaptation constraints by Inuit in the two communities indicate the continued importance of traditional coping mechanisms. The ability to draw on these coping mechanisms in light of future climate change, however, will be unequal and the research indicates that young Inuit and those without access to economic resources, in particular, are vulnerable.  相似文献   
238.
Brown and red, and to a lesser extent green, macroalgae are a hallmark of intertidal rocky coasts and adjacent shallow marine environments swept by stormy seas in middle and high latitudes. Such environments produce carbonate sediment but the sediment factory is neither well‐documented nor well‐understood. This study documents the general marine biology and sedimentology of rocky coastal substrates around Kaikoura Peninsula, a setting that typifies many similar cold‐temperate environments with turbid waters and somewhat elevated trophic resources along the eastern coast of South Island, New Zealand. The macroalgal community extends down to 20 m and generally comprises a phaeophyte canopy beneath which is a prolific rhodophyte community and numerous sessile calcareous invertebrates on rocky substrates. The modern biota is strongly depth zoned and controlled by bottom morphology, variable light penetration, hydrodynamic energy and substrate. Most calcareous organisms live on the lithic substrates beneath macroalgae or on algal holdfasts with only a few growing on macroalgal fronds. A live biota of coralline red algae [geniculate, encrusting and nodular (rhodoliths)], bryozoans, barnacles and molluscs (gastropods and epifaunal bivalves), together with spirorbid and serpulid worms, small benthonic foraminifera and echinoids produce sediments that are mixed with terrigenous clastic particles in this overall siliciclastic depositional system. The resultant sediments within macroalgal rocky substrates at Kaikoura contain bioclasts typified by molluscs, corallines and rhodoliths, barnacles and other calcareous invertebrates. In the geological record, however, the occurrence of macroalgal produced sediments is restricted to unconformity‐related early transgressive systems tract stratigraphic intervals and temporally constrained to a Cenozoic age owing to the timing of the evolution of large brown macroalgae.  相似文献   
239.
The late (?) Miocene non-marine to paralic Guayabo Group in northeastern Colombia and adjacent Venezuela contains as many as thirty-four thin (to 15 cm) goethitic and chamositic oolites and ooid-bearing sandstones in 1080 m of section. This eastward prograding deltaic complex consists mainly of chert-rich litharenite in fluvial, distributary channel, and shoreline facies, and of montmorillonite mudstone in floodplain and interdistributary embayment facies. Within this framework the oolites are restricted to a paralic association that developed during episodes of waning detrital sedimentation when distributary abandonment was followed by minor transgression across mudflats. Most of the multilayered and symmetrical ooids are composed of goethite, rarely with a small amount of chamosite. These are essentially spherical; many of the chamosite-rich ones have been plastically deformed. Goethitic ooids resemble those in a thin layer accumulating in brackish Lake Chad, central Africa. Chamositic ooids have affinities with those accumulating in a sea loch in western Scotland. Each of these examples is associated with detrital (silicate) sedimentation, apparently developed directly from colloidal ferric oxide and silicate precursors, and affords no evidence that primary aragonitic ooids were later placed by ironbearing oxide and clay.  相似文献   
240.
The Koloa Volcanic Suite of Kauai, Hawaii   总被引:3,自引:3,他引:3  
The Koloa lavas of the post-erosional volcanic suite of Kauaivary in composition from melilitite to alkali olivine basalt.87Sr/86Sr varies from {small tilde}0.7030 to 0.7033, the rangebeing similar to that of other Hawaiian post-erosional suites.The chemical composition within single lava flows is variableand forms major-element trends that are different from the mainKoloa trend. The main trend can be related to increased degreesof partial melting during decreasing pressure. The combinedevidence from Sr and Nd isotopes and rare earth elements (REEs)could suggest that an ocean island basalt (OIB) plume was infiltratedby a carbonate-rich melt with a high concentration of Sr andREEs derived from the mid-ocean ridge basalt (MORB) source.However, the Pb-isotope systematics of the Hawaiian islandsdo not suggest that a MORB source was involved during the generationof the posterosional lavas. Instead, we suggest that the Hawaiiantholeiitic and nephelinitic magma suites are derived from azoned plume with a low 87Sr/86Sr core and a high 87Sr/86Sr concentricmargin. The trends of the single flows and their variation inisotope ratios suggest that they formed from magmas accumulatedmainly from the central core of the zoned plume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号