首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   7篇
  国内免费   7篇
测绘学   4篇
大气科学   16篇
地球物理   45篇
地质学   64篇
海洋学   37篇
天文学   42篇
综合类   1篇
自然地理   15篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2017年   3篇
  2016年   11篇
  2015年   2篇
  2014年   10篇
  2013年   12篇
  2012年   6篇
  2011年   22篇
  2010年   4篇
  2009年   4篇
  2008年   11篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1932年   1篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
31.
32.
Analytic hierarchy process (AHP) is a utility theory based decision-making technique, which works on a premise that the decision-making of complex problems can be handled by structuring them into simple and comprehensible hierarchical structures. However, AHP involves human subjective evaluation, which introduces vagueness that necessitates the use of decision-making under uncertainty. The vagueness is commonly handled through fuzzy sets theory, by assigning degree of membership. But, the environmental decision-making problem becomes more involved if there is an uncertainty in assigning the membership function (or degree of belief) to fuzzy pairwise comparisons, which is referred to as ambiguity (non-specificity). In this paper, the concept of intuitionistic fuzzy set is applied to AHP, called IF-AHP to handle both vagueness and ambiguity related uncertainties in the environmental decision-making process. The proposed IF-AHP methodology is demonstrated with an illustrative example to select best drilling fluid (mud) for drilling operations under multiple environmental criteria.  相似文献   
33.
34.
The MESSENGER mission to Mercury, to be launched in 2004, will provide an opportunity to characterize Mercury's internal magnetic field during an orbital phase lasting one Earth year. To test the ability to determine the planetary dipole and higher-order moments from measurements by the spacecraft's fluxgate magnetometer, we simulate the observations along the spacecraft trajectory and recover the internal field characteristics from the simulated observations. The magnetic field inside Mercury's magnetosphere is assumed to consist of an intrinsic multipole component and an external contribution due to magnetospheric current systems described by a modified Tsyganenko 96 model. Under the axis-centered-dipole approximation without correction for the external field the moment strength is overestimated by ∼4% for a simulated dipole moment of , and the error depends strongly on the magnitude of the simulated moment, rising as the moment decreases. Correcting for the external field contributions can reduce the error in the dipole term to a lower limit of ∼1-2% without a solar wind monitor. Dipole and quadrupole terms, although highly correlated, are then distinguishable at the level equivalent to an error in the position of an offset dipole of a few tens of kilometers. Knowledge of the external magnetic field is therefore the primary limiting factor in extracting reliable knowledge of the structure of Mercury's magnetic field from the MESSENGER observations.  相似文献   
35.
Astronomical observations and cosmochemical calculations suggest that the planet Mercury may be composed of materials which condensed at relatively high temperatures in the primitive solar nebula and may have a basaltic crust similar to parts of the moon. These findings, plus the long standing inference that Mercury is much richer in metallic iron than the other terrestrial planets, provide important constraints which we apply to models of the thermal evolution and density structure of the planet. The thermal history calculations include explicitly the differing thermal properties of iron and silicates and account for core segregation, melting and differentiation of heat sources, and simulated convection during melting. If the U and Th abundances of Mercury are taken from the cosmochemical model of Lewis, then the planet would have fully differentiated a metal core from the silicate mantle for all likely initial temperature distributions and heat transfer properties. Density distributions for the planet are calculated from the mean density and estimates of the present-day temperature. For the fully differentiated model, the moment of inertia C/MR2 is 0.325 (J2=0.302×10?6). For models with lower heat source abundances, the planet may not yet have differentiated. The density profiles for such models give C/MR2=0.394 (J2=0.487×10?6). These results should be useful for preliminary interpretation of the Mariner 10 measurements of Mercury's gravitational field.  相似文献   
36.
Sounding rocket measurements of the solar soft X-ray irradiance   总被引:1,自引:0,他引:1  
Bailey  S.M.  Woods  T.N.  Canfield  L.R.  Korde  R.  Barth  C.A.  Solomon  S.C.  Rottman  G.J. 《Solar physics》1999,186(1-2):243-257
Measurements of the solar soft X-ray (XUV: 2 nm to 30 nm) irradiance were performed from a sounding rocket payload flown from White Sands Missile Range, New Mexico on 4 October 1993 and again on 3 November 1994. The soft X-ray instrumentation comprised of silicon photodiodes with thin films deposited directly onto their active areas. The deposited material and its thickness in conjunction with the sensitivity of an uncoated diode determine the passband and the sensitivity of these photometric devices. The measurements are interpreted in terms of appropriate SERF 1 (Hinteregger, Fukui, and Gilson, 1981) model solar spectra. It is found that the data are consistent with a solar spectrum that is on average approximately a factor of two times the model solar spectra. It is shown that the measured irradiances are in reasonable agreement with other experiments.  相似文献   
37.
Magnetic field and plasma data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft on the outbound portions of the first (M1) and second (M2) flybys of Mercury reveal a region of depressed magnetic field magnitude and enhanced proton fluxes adjacent to but within the magnetopause, which we denote as a dayside boundary layer. The layer was present during both encounters despite the contrasting dayside magnetic reconnection, which was minimal during M1 and strong during M2. The overall width of the layer is estimated to be between 1000 and 1400 km, spanning most of the distance from the dayside planetary surface to the magnetopause in the mid-morning. During both flybys the magnetic pressure decrease was ∼1.6 nPa, and the width of the inner edge was comparable to proton gyro-kinetic scales. The maximum variance in the magnetic field across the inner edge was aligned with the magnetic field vector, and the magnetic field direction did not change markedly, indicating that the change in field intensity was consistent with an outward plasma-pressure gradient perpendicular to the magnetic field. Proton pressures in the layer inferred from reduced distribution observations were 0.4 nPa during M1 and 1.0 nPa during M2, indicating either that the proton pressure estimates are low or that heavy ions contribute substantially to the boundary-layer plasma pressure. If the layer is formed by protons drifting westward from the cusp, there should be a strong morning–afternoon asymmetry that is independent of the interplanetary magnetic field (IMF) direction. Conversely, if heavy ions play a major role, the layer should be strong in the morning (afternoon) for northward (southward) IMF. Future MESSENGER observations from orbit about Mercury should distinguish between these two possibilities.  相似文献   
38.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft completed three flybys of Mercury in 2008–2009. During the first and third of those flybys, MESSENGER passed behind the planet from the perspective of Earth, occulting the radio-frequency (RF) transmissions. The occultation start and end times, recovered with 0.1 s accuracy or better by fitting edge-diffraction patterns to the RF power history, are used to estimate Mercury's radius at the tangent point of the RF path. To relate the measured radius to the planet shape, we evaluate local topography using images to identify the high-elevation feature that defines the RF path or using altimeter data to quantify surface roughness. Radius measurements are accurate to 150 m, and uncertainty in the average radius of the surrounding terrain, after adjustments are made from the local high at the tangent point of the RF path, is 350 m. The results are consistent with Mercury's equatorial shape as inferred from observations by the Mercury Laser Altimeter and ground-based radar. The three independent estimates of radius from occultation events collectively yield a mean radius for Mercury of 2439.2±0.5 km.  相似文献   
39.
In this study, we employed a number of geospatial techniques to examine the spatio-temporal patterns and changes of environmental attitudes and place attachment...  相似文献   
40.
GeoJournal - Determinants of place attachment have been extensively explored in the world now characterised by increased globalisation and mobility. Apart from some studies analysing attachment to...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号