首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   2篇
  国内免费   3篇
大气科学   10篇
地球物理   3篇
地质学   72篇
海洋学   12篇
天文学   2篇
自然地理   5篇
  2017年   1篇
  2016年   7篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   7篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有104条查询结果,搜索用时 150 毫秒
21.
At the Glarus thrust in the Swiss Helvetic Alps, Permian Verrucano siltstones are allochthonously superimposed over Tertiary Flysch with an intermediate, about 1 metre thin layer of intensively deformed calcmylonite of probable Mesozoic provenance. The H–O–C- and Sr-isotope compositions of minerals from the calc-mylonite and strongly mylonitized Verrucano siltstones were determined in order to assess: (1) equilibrium-disequilibrium relationships; (2) isotopic composition of the fluid phase, its provenance and water/rock ratios; (3) sources of Sr in the calc-mylonite; (4) deformation temperatures. The isotopic composition of cale-mylonite micro-samples from five sites along the thrust varies from 22 to 12 and 2 to-10 for 18O and 13C respectively. All samples are 18O depleted by up to 14 relative to the presumed marine Helvetic carbonate protoliths (18O=25.4±2). A pronounced geographic trend of 18O depletion from 22 in the north to 12 in the south is observed. In calc-mylonites, 87Sr/86Sr ratios range from typical Mesozoic marine carbonate protolith signatures (0.708±0.005) to more radiogenic values as high as 0.722. A variable contribution of radiogenic 87Sr to the calc-mylonite is though to reflect interaction with fluids that aquired their Sr from the Hercynian granitic basement. Chlorites and muscovites from the calc-mylonite and Verrucano have uniform 18O values but display D values from-40 to-147%: the D-enriched values correspond to the primary metamorphic or formational fluids expelled during thrusting, whereas the D-depleted samples reflect selective H-isotope exchange with meteoric fluids during uplift of the Alpine belt. The isotopic composition of the calc-mylonites requires exchange with 18O—depleted, 87Sr—enriched fluids at very high water/rock ratios. Possible sources for these are dewatering of the underlying Flysch and/or metamorphic fluids, or formation brines expelled along the thrust from greater depth. These could be derived from compaction and dewatering of the Flysch in the northern part of the thrust; in the south, however, where Verrucano is thrust over 18O-rich Mesozoic carbonates, the extreme 18O depletion of the calc-mylonite has to be explained either by fluid advection within the Verrucano hanging wall and thrust zone or alternatively by exchange with metamorphic fluids from greater depth, expelled along the thrust. Microstructural evidence (abundant veins, stylolites, breccias) suggests that fluids played an important role in deformation and strain localization. Excepting albite all major components (quartz, chlorite, muscovite, calcite) are both dynamically recrystallized and crystallized as secondary minerals in pressure shadows and syn-mylonitic veins, indicating that these minerals were potentially open to oxygen isotopic exchange during alpine metamorphism and thrust deformation. Within the mylonitized Verrucano silstones, isolated quartz-chlorite and quartz-calcite fractionations yield temperatures of around 320°C close to values obtained from calcite-dolomite thermometry (355°C±30) and in agreement with the regional lower greenschist facies metamorphism. Quartz-calcite and quartz-albite fractionations indicate slightly lower temperatures around 250°C, owing to selective lower temperature re-equilibration of the calcite and albite during post peak metamorphism.  相似文献   
22.
23.
Sub-sea-floor metamorphism,heat and mass transfer   总被引:4,自引:0,他引:4  
The ophiolitic rocks of E. Liguria, Italy contain a spilitic metamorphic assemblage sequence, cross-cut by hydrothermal veins, which developed in the oceanic environment. Metamorphic parageneses indicate that temperatures as high as 400°C were realised at depths as shallow as 300 m below the original rock/water interface. The inferred temperature interval was equivalent to a geothermal gradient of 1300°C/km.It is suggested that metamorphism took place in a sub-sea-floor geothermal system, and that such systems are an integral part of the sea-floor spreading process. Modern evidence is provided to support this hypothesis, and to suggest that heavy metal rich solutions discharged from such systems are responsible for the formation of a metal enriched sedimentary component. A unified model of sub-sea-floor metamorphism and mass transfer is proposed, and possible differences between sub-sea-floor and terrestial geothermal systems are discussed. In the light of the model, the origins of certain aspects of bedded cherts found associated with ophiolitic rocks, of ophiolitic massive sulphide deposits and of certain trace element patterns are considered.  相似文献   
24.
It has been suggested that the highly hydrated character of the Mg2+ ion in aqueous solution is responsible for the often encountered difficulty of precipitating stable, anhydrous phases of magnesium carbonate and calcium-magnesium carbonate. In an effort to investigate this, a study of magnesite crystallization kinetics was undertaken, utilizing the reaction of hydromagnesite plus CO2 to yield magnesite at 126°C. The reactions were characterized by prolonged initial quiescent periods prior to the onset of detectable crystallization. The length of the initial period was found to vary with Mg concentration, pCO2 and ionic strength. Contrary to classical kinetics, the reaction studied was inhibited by increased Mg concentration. Ionic strength and pCO2 acted as positive catalysts.  相似文献   
25.
26.
Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)3, As(SH)2S- and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides S n 2- , n = 2–6, the bisulfide anion, SH-, hydrogen sulfide, H2S and the sulfanes, S n H2, n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH- to H2S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S8 with SH- to produce the polysulfides, S n H-, n = 2–6. Our results are in excellent agreement with available experimental data, and support the existence of a S6 species.  相似文献   
27.
Low-latitude carbonate muds often are composed either of entire units of skeletons (e.g., algal muds) or of precipitates, whereas high-latitude carbonate muds are bioerosional or result from maceration. Bioerosion at high latitudes is most intense in the photic zone, particularly down to 25 m depth. Shelly substrata may be crushed, bitten, drilled, bored or scraped. Clionid sponges, endolithic algae, acmaeid gastropods and regular echinoids are the most significant agents. Clionids produce distinctive facetted carbonate silt chips when boring, which have been described from both high- and low-latitudes. Faecal pellets break down to yield mud-sized carbonate particles that are more irregular than those produced by maceration. Exhumed infaunal bivalves are often preferred to epifaunal organisms as substrata. Bioerosion occurs very rapidly; shells may be totally infested with boring algae in three months. A “moth-eaten” appearance therefore does not denote a relict grain. Reliable rates of fine sediment production are not yet available.

The mud fraction of northwest European shelf sediment generally contains 10–20% CaCO3, though an inshore and offshore belt with higher values may be identified. Some Holocene supratidal mud-flats exceed 50% CaCO3. Much of the shelf represents a modern-day equivalent of the “calcareous shale” facies common in the geological record. Instances of synsedimentary cementation are not uncommon, particularly in association with heavily burrowed muds.  相似文献   

28.
Granites and thermal structures in the lithosphere   总被引:1,自引:0,他引:1  
The production of melts of the granite clan on a significant scale requires participation of continental crust. Such crust will melt when heated from below by a mantle thermal anomaly, or when thickend to 40 km or more. Sites of melting, and the time sequences of melting associated with subduction and underplating processes, and collision processes, are complex. In both these processes, at least six melting sites may be involved. The final chemical and isotopic composition of granitic melts depends on a very complex array of processes, which include: source composition, composition of subducted materials, magma mixing, magma underplating, assimilation-fractionation-cooling processes. Resolution of granite melt dynamics requires an integrated attack, using modern seismic and electrical measurements, in regions where the continental crust is abnormally thick or hot.
Zusammenfassung Die Produktion von Granitschmelzen im grö\eren Ausma\e erfordert die Beteiligung kontinentaler Kruste. Die Kruste wird aufgeschmolzen, wenn sie von unten durch eine Wärmeanomalie des Mantels aufgeheizt wird oder wenn sie mächtiger als 40 km wird. Der Ort des Aufschmelzens und die Zeitabfolge des Schmelzens, die im Zusammenhang mit Subduktion Plattenstapelung und Kollisionsprozessen ablaufen, sind äu\erst komplex. Diese Prozesse sind mindestens auf sechs verschiedene Areale zu lokalisieren, in denen Aufschmelzung möglich ist. Die endgültige chemische und isotopenchemische Zusammensetzung von Granitschmelzen hängt von einer sehr komplexen Proze\abfolge ab, wobei zu berücksichtigen sind: Die Zusammensetzung des Ausgangsmaterials, die Zusammensetzung subduzierten Materials, Magmenmischung, Magmenunterströmung und Proze\e der Assimilation, Fraktionierung und Abkühlung. Um die Dynamik einer Granitschmelze zu erkennen, bedarf es moderner seismischer und geoelektrischer Methoden in Gegenden, wo die kontinentale Kruste ungewöhnlich dick oder hei\ ist.

Résumé La production en quantité importante de liquides de la famille granitique requiert la participation de la croûte continentale. Celle-ci fond lorsqu'elle est chauffée d'en bas par une anomalie thermique du manteau, ou quand son épaisseur s'accroÎt jusqu'à 40 km ou plus. Les endroits où se développe la fusion, ainsi que son déroulement temporel, associé aux processus de subduction et d'underplating, sont complexes. Pour chacun de ces deux processus, six sites de fusion ou moins peuvent Être définis. Les compositions chimique et isotopique finales des liquides granitiques dépendent d'un ensemble de processus très complexes, qui comportent: la composition de la source, la composition des matériaux subductés, le mélange de magmas, les processus d'assimilation, de fractionement et de refroidissement.La compréhension de la dynamique de la fusion granitique requiert une approche intégrée qui comporte la mise en oeuvre de méthodes sismiques et géoélectriques modernes dans des régions où la croûte continentale est anormalement chaude ou anormalement épaisse.

. , , , 40 . , . , , , . , : , , , , . , , , .


Based on a lecture presented at the Granit Symposium, Gie\en 1986. London  相似文献   
29.
Numerous small deposits of U-rich laterites are found in the northwestern border of the Paraná Basin. Detailed mineralogy and chemistry of the uranium lateritic ores from the Iporá-Amorinopolis region were studied using classic petrographic techniques, X-ray diffraction and fluorescence, atomic absorption, infrared and Mössbauer spectrography, autoradiography, electron microprobe and scanning electron microscopy with energy-dispersive spectroscopy. The ore mineral assemblage is formed by goethite, lepidocrocite, hematite, quartz, calcedony, variscite, wavelite, apatite, collophane, barite, gypsite, renardite, meta-autunite I, uranophane, fourmarierite, koninchite, ranquilite, phospho-uranilite, meta-uranocircite I, meta-uranocircite II, metatyuyamunite, sklodowskite, parsonite and an hydrated Ca-silicate of uranium. The mineralization can be weakly disseminated in the laterite matrix with U probably adsorbed in the lepidocrocite; in pockets and impregnations of yellowish uranium phosphated within the laterite (U3O810%) and in nodules with U3O8 ranging from 25% to 55%. The nodules are the most common ore type, being typically concentric with a white porous barite-gypsite-apatite core, followed by a compact greenish-yellow rim with colloform uranophane and ranquilite, a yellow aggregate of meta-autunite I, renardite and koninchite and an outer brownish-yellow shell of goethite with disseminated fourmarierite, renardite and koninchite. Size, shape and chemistry of the nodules indicate replacement of brachiopods and chitinozoa that are abundant in the Ponta Grossa Fm. by a primary uraninite-pyrite assemblage that is found in drill cores from fresh rock. The U enrichment is accompanied by enrichment of Ba, Ca, Sr, Pb, Ce and Nd in sulphate, phosphate, hydrous silicate or vanadate phases. The efficient separation of metals like Ce and Nd in individual phases on the surface of barite illustrates a clear example of a natural chromatographic separation. Such a process may be an important mechanism to explain the varying microchemistry within a laterite profile where each successive microsystem represents a chromatographic column through which the solubilities of metals will vary slightly in the continuum of Eh- and pH-values.  相似文献   
30.
Fluids, tectonics and crustal deformation   总被引:1,自引:0,他引:1  
In the plate tectonic process, lithosphere creation at ocean ridges and its cooling leads to volatile fixation in the oceanic crust. The outer 10 km or so of all crust contains abundant water in pores and fractures and variable amounts of volatiles in minerals. When surface rocks are buried by tectonic processes, fluids must be released and modify the mechanical properties. In the subduction process hydrated oceanic crust may be decoupled from the remaining oceanic lithosphere. At depth rising aqueous fluids or melts lead to a complex series of mass-energy transfer processes which may decouple continental crust near the Moho. Continental crust if subducted, may also be decoupled from its lithosphere by degassing. Fluid release processes which create gas-solid mixtures beneath impermeable cover create low-strength systems subject to facile deformation, hydraulic fracture processes and diapiric phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号