首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   26篇
  国内免费   9篇
测绘学   19篇
大气科学   72篇
地球物理   160篇
地质学   264篇
海洋学   68篇
天文学   222篇
综合类   2篇
自然地理   92篇
  2021年   11篇
  2020年   14篇
  2019年   17篇
  2018年   17篇
  2017年   15篇
  2016年   32篇
  2015年   20篇
  2014年   18篇
  2013年   40篇
  2012年   24篇
  2011年   22篇
  2010年   31篇
  2009年   52篇
  2008年   31篇
  2007年   30篇
  2006年   40篇
  2005年   29篇
  2004年   38篇
  2003年   35篇
  2002年   33篇
  2001年   15篇
  2000年   28篇
  1999年   17篇
  1998年   17篇
  1997年   14篇
  1996年   9篇
  1995年   13篇
  1994年   10篇
  1993年   14篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1988年   8篇
  1987年   15篇
  1986年   4篇
  1985年   14篇
  1984年   19篇
  1983年   13篇
  1982年   8篇
  1981年   15篇
  1980年   9篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   9篇
  1975年   10篇
  1974年   4篇
  1973年   4篇
  1972年   5篇
  1970年   4篇
排序方式: 共有899条查询结果,搜索用时 31 毫秒
71.
A number of symbiotic stars have been observed with ISO. In addition to a number of emission lines, SWS observations of the symbiotic novae RR Tel and V1016 Cyg reveal prominent, broad 10 & 18 μm silicate dust features. The 10 μm features are similar to the crystalline silicate profiles seen in classical novae. There is some evidence that the silicate brightness in V1016 Cyg varies with Mira-component phase. However, the silicate feature in RR Tel also showed some variation even though observations were made at very similar Mira-component phases. PHT observations of S-type symbiotic stars show the IR emission to be dominated by the red-giant component. However, an excess in the PHT-P filters from 10 to 15 μm is evident in all the stars, and there may be a broad 3.2 μm absorption feature or a broad 3.8 μm emission feature. At this time we have no adequate physical explanations for any of these features. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
72.
We present FOcal Reducer/low dispersion Spectrograph-1 spectra (from the European Southern Observatory's Very Large Telescope) of a sample of 34 faint  20.0 < g * < 21.1  A-type stars selected from the Sloan Digital Sky Survey Early Data Release, with the goal of measuring the velocity dispersion of blue horizontal branch (BHB) stars in the remote Galactic halo,   R ∼ 80 kpc  . We show that colour selection with  1.08 < u *− g * < 1.40  and  −0.2 < g *− r * < −0.04  minimizes contamination of the sample by less luminous blue stragglers. In classifying the stars we confine our attention to the 20 stars with spectra of signal-to-noise ratio >15 Å−1. Classification produces a sample of eight BHB stars at distances  65–102 kpc  from the Sun (mean 80 kpc), which represents the most distant sample of Galactic stars with measured radial velocities. The dispersion of the measured radial component of the velocity with respect to the centre of the Galaxy is  58 ± 15 km s−1  . This value is anomalously low in comparison with measured values for stars at smaller distances, as well as for satellites at similar distances. Seeking an explanation for the low measured velocity dispersion, further analysis reveals that six of the eight remote BHB stars are plausibly associated with a single orbit. Three previously known outer halo carbon stars also appear to belong to this stream. The velocity dispersion of all nine stars relative to the orbit is only  15 ± 4 km s−1  . Further observations along the orbit are required to trace the full extent of this structure on the sky.  相似文献   
73.
This study analyzes the heat budget of the Arabian Sea using satellite-derived sea-surface temperature (SST) from 1985 to 1995 along with other data sets. For a better understanding of air–sea interaction, canonical average monthly fields representing the spatial and temporal structure of the various components of the heat balance of the Arabian Sea are constructed from up to 30 years of monthly atmospheric and oceanic data. The SST over the Arabian Sea is not uniform and continually evolves with time. Cooling occurs over most of the basin during November through January and May through July, with the greatest cooling in June and July. Warming occurs over most of the basin during the remainder of the year, with the greatest warming occurring in March and September. Results indicate that the sign of the net heat flux is strongly dependent on the location and month. The effects of net heat flux and penetrative solar radiation strongly influence the change in SST during February and are less important during August and September. Horizontal advection acts to cool the sea surface during the northeast monsoon months. During the southwest monsoon horizontal advection of surface waters warms the SST over approximately the southern half of the basin, while the advection of upwelled water from the Somalia and Oman coasts substantially cools the northern basin. The central Arabian Sea during the southwest monsoon is the only area where the change in SST is balanced by the entrainment and turbulent diffusion at the base of the mixed layer. Agreement between the temporal change in the satellite-derived SST and the change calculated from the conservation of heat equation is surprisingly good given the errors in the measured variables and the bulk formula parameters. Throughout the year, monthly results over half of the basin agree within 3°. Considering that the SST changes between 8° and 12° over the year, this means that our results explain from 62% to 75% of the change in SST over 56% of the Arabian Sea. Two major processes contribute to the discrepancy in the change in SST calculated according to the heat budget equation and the change in SST derived from satellite observations. The first is the effect of the horizontal advection term. The position of the major eddies and currents during the southwest monsoon greatly affects the change in SST due to the large gradient in temperature between the cold upwelled waters along the Somali coast to the warm waters in the interior of the basin. The second major process is the thermocline effect. In areas of shallow mixed-layer depth, high insolation and wind speeds of either less than 3 m/s or greater than 15 m/s, the bulk formulae parameterization of the surface heat fluxes is inappropriate.  相似文献   
74.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   

75.
The Dashui gold deposit is a structurally controlled, Carlin-type gold deposit hosted by recrystallised limestone in the West Qinling Orogen of Central China. The major, structurally late east-trending Dashui Fault forms the hanging wall to the gold mineralisation at the Dashui mine and defines the contact between Middle Triassic limestone and a steeply dipping overlying succession of Middle Triassic argillaceous limestone, dolomite, and sandstone. Multiple carbonate veins and large-scale supergene enrichment, represented by hematite, goethite, limonite and jarosite, characterise the deposit. Detailed geochronological investigation using zircon SHRIMP U-Pb dating reveals that volcanic rocks closely associated with the Dashui gold deposit were synchronous with the Ge’erkuohe Granite and pre-date mineralisation. The igneous dyke sample from the hanging wall has the same U-Pb zircon age as the footwall, ca. 213 Ma. (U-Th)/He thermochronology on dykes in the hanging wall and footwall of the Dashui Fault yields identical (U-Th)/He zircon ages of ca. 210 Ma but distinct (U-Th)/He apatite ages of ca. 136 and 211 Ma, respectively. Therefore, the hanging wall and footwall are interpreted as having distinct post-mineralisation exhumation histories. Reverse fault movement exhumed the hanging wall ~2 to 4 km since the Late Triassic with the main component of faulting taking place between the Late Triassic and Early Cretaceous. These relationships suggest a Late Triassic to Early Cretaceous age for the primary gold mineralisation at the Dashui gold deposit, with the corollary that any ‘missing portion’ of the deposit, previously hypothesised to exist in the hanging wall of the Dashui Fault, has been eroded away. The mineralisation in the footwall may have been supergene enriched soon after the primary mineralisation was emplaced, because it has been located at shallow depth since the Late Triassic. Semi-quantitative results obtained in this study also constrain the maximum depth of formation of the Dashui gold at no more than 2 km.  相似文献   
76.
77.
Shear-wave splitting has been identified in many three-component seismograms from two separate field experiments on a section of the North Anatolian Fault in North-West Turkey. These observations are consistent with shear-wave propagation through a zone of extensive-dilitancy anisotropy. A preliminary attempt has been made to confirm this interpretation by simultaneously inverting suites of arrival-times for hypocentral locations and for parameters describing an anisotropic halfspace. Although the inversion procedure is not globally convergent, it is possible to recognize the true solution by systematically varying the initial conditions. Applied to selected data sets, the inversion defines several anisotropic models that fit the data significantly better than a simple isotropic model, and display the anisotropy required by the shear-wave splitting. However, most of these anisotropic models are not superior when they are used to individually locate events in a much larger data set. However, for each experiment, there is a single model that produces clearly superior locations for the larger data sets than those of other anisotropic or simple isotropic models. Both models display similar velocity variations which are characteristic of propagation through distributions of biplanar cracks displaying orthorhombic symmetry. The principal axes of the two models are oriented in similar directions and are within 20° of the principal axis of regional stress derived from fault-plane solutions. The solutions indicate low velocities close to the tensional axis, as would be expected in extensive-dilatancy anisotropy.  相似文献   
78.
79.
The diamondiferous Ellendale 9 (E9) pipe is a funnel-shaped maar-diatreme volcano consisting of inward-dipping tuff sequences intruded by lamproite plugs and dykes. The host rocks for the E9 pipe are Permian sandstones. The multiple lithological contacts exposed within the mined maar volcano provide a natural laboratory in which to study the effect of volcanic processes on U–Th–Pb–He systematics. Zircon from the regional sandstone and E9 lamproite display a bimodal distribution of ages on (U–Th)/He–U/Pb plots. The zircon U/Pb ages for the E9 pipe (n?=?52) range from 440 to 2,725 Ma, while the cluster of (U–Th)/He ages for the lamproite dyke zircon indicate that dyke emplacement occurred at 20.6?±?2.8 Ma, concordant with a maximum emplacement age of about ≤22 Ma from phlogopite 40Ar/39Ar. These ages indicate a xenocrystic origin for the zircon entrained in the E9 dyke. The U/Pb ages of detrital zircon from the regional sandstone host (373–3,248 Ma; n?=?41) are indistinguishable from those of the lamproite zircon xenocrysts, whereas the detrital zircon in the host sandstone yield (U–Th)/He ages from 260 to 1,500 Ma. A thermochronology traverse across the E9 lamproite dyke reveals that the zircon (U–Th)/He ages in the host sandstone have not been significantly thermally reset during dyke emplacement, even at the contact. The capability of the zircon (U–Th)/He method to distinguish deep, mantle source lithologies from upper crustal source lithologies could be used in geochemical exploration for diamonds. Pre-screening of detrital samples using etching and helium assay methods will improve the efficiency and decrease the cost of greenfields exploration.  相似文献   
80.
The Eskimo Lakes and Liverpool Bay constitute a series of estuarine waters to the Beaufort Sea in arctic Canada. Salinity ranges in summer from 20‰ at the mouth to less than 1‰ at the head of the system. Arctic features include an ice cover lasting for about 8 months annually and water temperatures which fluctuate from ?1°C in winter to as high as 12°C in late summer. Subsurface light is severely attenuated. Reactive phosphate varies from a spring high of 0.3 μg-at P per 1 to undetectable levels during summer. Nitrate is more abundant, and silicate is consistently plentiful. Chlorophyll a reaches a maximum only occasionally higher than 3 mg per m3 in June and July, rising from undetectable levels in winter. Photosynthetic rates are low by all standards, and have not been measured at greater than 6.4 mg C per m2 per hour in summer. Low levels of subsurface light and reactive phosphate and nitrate characterize this exceptionally oligotrophic arctic estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号