首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   31篇
  国内免费   9篇
测绘学   19篇
大气科学   72篇
地球物理   160篇
地质学   264篇
海洋学   68篇
天文学   222篇
综合类   2篇
自然地理   92篇
  2021年   11篇
  2020年   14篇
  2019年   17篇
  2018年   17篇
  2017年   15篇
  2016年   32篇
  2015年   20篇
  2014年   18篇
  2013年   40篇
  2012年   24篇
  2011年   22篇
  2010年   31篇
  2009年   52篇
  2008年   31篇
  2007年   30篇
  2006年   40篇
  2005年   29篇
  2004年   38篇
  2003年   35篇
  2002年   33篇
  2001年   15篇
  2000年   28篇
  1999年   17篇
  1998年   17篇
  1997年   14篇
  1996年   9篇
  1995年   13篇
  1994年   10篇
  1993年   14篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1988年   8篇
  1987年   15篇
  1986年   4篇
  1985年   14篇
  1984年   19篇
  1983年   13篇
  1982年   8篇
  1981年   15篇
  1980年   9篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   9篇
  1975年   10篇
  1974年   4篇
  1973年   4篇
  1972年   5篇
  1970年   4篇
排序方式: 共有899条查询结果,搜索用时 14 毫秒
151.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   
152.
Passive treatment systems have a long history in the remediation of mining impacted water. The functioning of these systems is poorly understood, in particular the microbial processes that underpin metal removal. A biologically based engineered wetland treatment system that has operated in Trail, B.C. to treat seepage from a historic Pb and Zn smelter landfill, was investigated. The system has functioned for more than a decade, an unusually long life span for a passive bioreactor design. The study focuses on the 5a of operation from 2003 until 2007. Arsenic is a major contaminant in the ore that is processed in Trail, which has caused high As concentrations in the seepage. In addition to As, Zn and Cd removal were investigated. During the 5-a period, the system sequestered 2990 kg of As, 7700 kg of Zn and 85 kg of Cd. Nearly 90% of these elements were removed in two biochemical reactors (BCRs) that comprise the first two components of the six cell system, with the remainder removed in plant-based polishing cells. Average input concentrations over the 5-a period were 2.3 and 4.1 mM for As and Zn, respectively and 0.45 μM for Cd. Final output concentrations were reduced to 0.01 mM for As, 0.05 mM for Zn and 0.18 μM for Cd. Sulfur removal averaged 34% of input concentration. Analysis of mineral formation in the system using X-ray diffraction and scanning electron microscopy indicated kottigite (Zn3(AsO4)2⋅8H2O) and sphalerite (ZnS) as the major mineral phases controlling As and Zn sequestration; Cd appears to be immobilized as CdS. Evidence for orpiment was obtained from X-ray absorption spectroscopy (XANES) studies, and arsenopyrite was not detected. Although microbial activity dominates the removal of Zn, As and Cd from the soluble phase, abiotic removal mechanisms contribute including sorption of As and Zn to biosolids and filtration of metal precipitates by the solid matrix. The removal of toxic elements over the period appeared to be relatively consistent. Seasonal fluctuations, a large spike in input element concentrations over a 2-month period, and removal of the two biochemical reactors during a period of reconstruction appeared to have relatively little impact on the system as a whole.  相似文献   
153.
Palaeogeographic reconstructions and structural analysis of the Late Carboniferous to Triassic of central eastern Australia indicate that sedimentation and deformation were responses to the prolonged application of a dextral rotational force couple to the craton margin and to eustatic sea‐level changes. The force couple distorted the craton margins and adjacent Yarrol‐New England geosyncline and orogen into an incipient coupled orocline. The influence of the couple commenced in the Late Devonian and continued with varying effect until the Late Triassic, when it reversed to a sinistral system, part of a completely different stress regime that controlled sedimentation and structure during the Early Jurassic. Within the craton, deformation mainly took the form of a series of en echelon depressions, such as the Drummond Basin, Koburra, Denison and Taroom Troughs. A lineament between Longreach and Roma marks the southern boundary of this type of strain, although crust beyond its limit was not so rigid as to be unaffected by the force couple. The Yarrol‐New England region during the Devonian and the Early Carboniferous was the site of geosynclinal deposition where a thick and typically volcanogenic wedge lay along the eastern border of the craton. During the Late Carboniferous and Early Permian comparable wedges were formed farther to the east, in effect building outwards into the geosyncline. The same tensional regime that created the geosyncline is seen as the means for thinning crust below the sediment wedge and thus provided thermal instability, and for the igneous diapirism expressed as both intrusion and extrusion that characterizes the orogen from the Late Carboniferous onwards. The dextral force couple was responsible for most of the deformation and for controlling final emplacement of plutons. Sea‐level rises were marked in the late Early Permian and again in the early Late Permian.  相似文献   
154.
Annual dissolved element fluxes of Himalayan rivers from Central Nepal are calculated using published river discharge and a new set chemical data of rivers, including monsoon sampling. These are used to study the control on chemical erosion of carbonate and silicate over the whole basin. Chemical erosion of carbonate is mainly controlled by the river runoff but it can be limited by the availability of carbonate in limestone-free basin. Chemical erosion of silicate is well correlated to the runoff. However differences between High Himalayan and Lesser Himalayan basins suggest that physical erosion may also play an important control on silicate weathering. To cite this article: C. France-Lanord et al., C. R. Geoscience 335 (2003).  相似文献   
155.
The increasing number and variety of extrasolar planets illustrates the importance of characterizing planetary perturbations. Planetary orbits are typically described by physically intuitive orbital elements. Here, we explicitly express the equations of motion of the unaveraged perturbed two-body problem in terms of planetary orbital elements by using a generalized form of Gauss’ equations. We consider a varied set of position and velocity-dependent perturbations, and also derive relevant specific cases of the equations: when they are averaged over fast variables (the “adiabatic” approximation), and in the prograde and retrograde planar cases. In each instance, we delineate the properties of the equations. As brief demonstrations of potential applications, we consider the effect of Galactic tides. We measure the effect on the widest-known exoplanet orbit, Sedna-like objects, and distant scattered disk objects, particularly with regard to where the adiabatic approximation breaks down. The Mathematica code which can help derive the equations of motion for a user-defined perturbation is freely available upon request.  相似文献   
156.
We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3–7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02′S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48′S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an  18 km2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005−06 at the East Pacific Rise, 9°50′N and reference to global seismic catalogues reveals that a swarm of large (M 4.6−5.6) seismic events was centred on the 5°S segment over a  24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at  3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.  相似文献   
157.
In a previous work, we developed a numerical model of compression by pressure solution (PS) of a single axisymmetric asperity pressed against a flat semi-infinite solid. The dissolution rate at any point along the contact and at any time t was determined by (1) computing the normal stress distribution from the current shape of the asperity, and (2) solving the diffusion equation inside the fluid-saturated solid-solid interface, including local dissolution source terms corresponding to the stress field previously determined. The change in shape of the asperity during an infinitesimal time interval δt can then be calculated and the entire procedure repeated as many times as desired. Our results showed that, as the contact flattens and grows during PS, the initial elastic deformation is partially relaxed and the stress transferred from the contact center to the edge. Our goal in the present paper is to demonstrate that, among a population of asperities, stress can also be transferred from one contact to another and that the overall compaction rate can be significantly affected by this process. For this purpose we extended our previous numerical model to simulate PS of two rigidly coupled spherical asperities simultaneously pressed against a flat semi-infinite solid. We considered two end-member cases: 1) transfer of stress to a newly created, not initially present contact, 2) transfer of stress between asperities with different sizes. In both cases, stress was transferred from the most stressed asperity to the least, and, the overall PS displacement rate was reduced. Thus, formation of new contacts and heterogeneous distribution of asperity sizes, which are both expected to exist in rough fractures with self-affine aperture or in heterogeneous granular materials with variable grain-packing geometry, may significantly slow down PS creep compaction.  相似文献   
158.
We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640 ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water–rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40?Ar/4?He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300 °C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ± 140 t d− 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4 t d− 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42− in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140–370 MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1–3% for CO2, 2–8% for heat) of that estimated for the entire Yellowstone system.  相似文献   
159.
160.
A small cephalopod assemblage collected during the 1930s by J. A. Douglas from the Middle Ordovician San José Formation of Cuzco Province is redescribed. Although small in number (four taxa) and poorly preserved, this assemblage contains a representative of the ellesmerocerid family Eothinoceratidae and a probable member of the Arionoceratidae (Orthocerida). One taxon may be closely related to Protocycloceras harringtoni Cecioni from northern Argentina. The presence of a particular group of eothinoceratids, here and elsewhere in South America indicate a link with western Gondwana. The relatively diminutive size of the arionoceratids suggests homeomorphy with those Silurian forms associated with a pelagic habitat and indicates a relatively offshore site for this assemblage. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号