首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100382篇
  免费   1567篇
  国内免费   757篇
测绘学   2703篇
大气科学   7835篇
地球物理   20354篇
地质学   33075篇
海洋学   8599篇
天文学   22912篇
综合类   225篇
自然地理   7003篇
  2020年   719篇
  2019年   765篇
  2018年   1562篇
  2017年   1543篇
  2016年   2137篇
  2015年   1504篇
  2014年   2276篇
  2013年   4981篇
  2012年   2309篇
  2011年   3341篇
  2010年   2952篇
  2009年   4188篇
  2008年   3778篇
  2007年   3557篇
  2006年   3505篇
  2005年   3136篇
  2004年   3151篇
  2003年   2946篇
  2002年   2819篇
  2001年   2544篇
  2000年   2456篇
  1999年   2236篇
  1998年   2190篇
  1997年   2153篇
  1996年   1848篇
  1995年   1771篇
  1994年   1641篇
  1993年   1499篇
  1992年   1437篇
  1991年   1316篇
  1990年   1518篇
  1989年   1354篇
  1988年   1224篇
  1987年   1479篇
  1986年   1261篇
  1985年   1608篇
  1984年   1886篇
  1983年   1744篇
  1982年   1656篇
  1981年   1567篇
  1980年   1346篇
  1979年   1338篇
  1978年   1340篇
  1977年   1249篇
  1976年   1164篇
  1975年   1073篇
  1974年   1121篇
  1973年   1144篇
  1972年   718篇
  1971年   656篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
When viewed from the air, Scottish ‘hummocky moraine’ can be resolved into a series of linear ridges that resemble those found at the margins of actively retreating glaciers today. Recent work has supported the interpretation of these linear ridges as ice-marginal landforms and the authors believe that the majority of ‘hummocky moraine’ deposits can be interpreted in this way. Consequently the pattern of deglaciation can be established fairly precisely from the pattern of linear ridges. This approach is applied to the landforms of the northern part of the Loch Lomond Stadial ice-field in order to reconstruct the regional pattern of deglaciation. This leads to important inferences about the significance of topographic control during deglaciation and more importantly it provides fresh insight into the environment of the British Isles during the Loch Lomond Stadial.  相似文献   
102.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
103.
104.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
105.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
106.
High-frequency (HF) radar systems are remote sensing tools that can be used to measure oceanographic parameters. Problems can occur when using the conventional periodogram (PG) method for computing power spectral estimates from backscattered radar signals. Temporal and spatial inhomogeneities within the radar measurement region can cause distortion in the spectra. This paper describes an instantaneous-frequency (IF) filtering technique that has been developed to measure the first-order modulation contained within the radar signal. Successful removal of this modulation is shown to yield an increased quality and quantity of ocean measurements  相似文献   
107.
The Quaternary fills of the buried valleys of southern Alberta and Saskatchewan have provided a wealth of information for the reconstruction of the glacial-interglacial record of the western plains of Canada, and this paper reports on the previously unstudied stratigraphy of the buried Calgary Valley and its former tributaries in the lower Red Deer River area. We attempt to differentiate Empress Group sediments, which potentially relate to pre-glacial, interglacial/ interstadial and post-glacial lake and river deposition, using sedimentology, stratigraphy and palaeoecology. Twenty-nine stratigraphical logs indicate that Empress Group sediments have infilled a considerably large area of badlands and tributary coulees that once drained into the Calgary Valley, located 15 km to the north of Dinosaur Provincial Park. Radiocarbon dates of 52.4 ka, 27.4 ka and > 42.4 ka and glacially modified quartz grains suggest that at least some of the valley fills date to interglacial or interstadial periods and may be mid-Wisconsinan in age. However, outcrops of an older till overlying other valley fills suggest that the buried valleys were only partially excavated during interglacials/interstadials and that older (even pre-glacial) sediments could have survived. Subglacial channels, recognisable on air photographs, largely coincide with buried valley positions due to the preferential excavation of the Quaternary sediment by meltwater and are filled with post-glacial lake sediment from which a radiocarbon date of 16 ka BP was obtained. Pre-glacial and glacial/post-glacial Empress Group sediments are lithologically indistinct but cover a large time span in southern Alberta.  相似文献   
108.
Systematic mapping of a transect along the well-exposed shores of Georgian Bay, Ontario, combined with the preliminary results of structural analysis, geochronology and metamorphic petrology, places some constraints on the geological setting of high-grade metamorphism in this part of the Central Gneiss Belt. Correlations within and between map units (gneiss associations) have allowed us to recognize five tectonic units that differ in various aspects of their lithology, metamorphic and plutonic history, and structural style. The lowest unit, which forms the footwall to a regional decollement, locally preserves relic pre-Grenvillian granulite facies assemblages reworked under amphibolite facies conditions during the Grenvillian orogeny. Tectonic units above the decollement apparently lack the early granulite facies metamorphism; out-of-sequence thrusting in the south produced a duplex-like structure. Two distinct stages of Grenvillian metamorphism are apparent. The earlier stage (c. 1160–1120 Ma) produced granulite facies assemblages in the Parry Sound domain and upper amphibolite facies assemblages in the Parry Island thrust sheet. The later stage (c. 1040–1020 Ma) involved widespread, dominantly upper amphibolite facies metamorphism within and beneath the duplex. Deformation and metamorphism recently reported from south and east of the Parry Sound domain at c. 1100–1040 Ma have not yet been documented along the Georgian Bay transect. The data suggest that early convergence was followed by a period of crustal thickening in the orogenic core south-east of the transect area, with further advance to the north-west during and after the waning stages of this deformation.  相似文献   
109.
110.
Globorotalia puncticulata and Globorotalia margaritae are critical species that define internationally recognized planktonic foraminiferal biozones in the Pliocene. These biozones are defined from stratotype sections on Sicily and their fauna are commonly considered to have been introduced to the Mediterranean after an influx of Atlantic water that terminated the late Miocene desiccation of the basin. Herein new discoveries of these species in rocks that predate the late Miocene desiccation are described. These data are supported by magneto- and lithostratigraphy that have been integrated at a single continuous section. Not only do these discoveries question the existing foraminiferal biozone stratigraphy, they also suggest new models for the dispersal of planktonic species. It is proposed that Globorotalia puncticulata and perhaps even Globorotalia margaritae evolved in the Mediterranean during earliest Messinian times (during or before chron C3Bn1n) and dispersed into the Atlantic. This suggests that a marine connection remained between the two sea areas until at least chron C3An.1n. Using the existing geomagnetic polarity time scale, these occurrences are some 2 Myr earlier than previously recorded in the Mediterranean. The distribution of G. margaritae and G. puncticulata in Mediterranean sections is likely to reflect palaeoenvironment or the preservation of deposits rather than the absolute age of the sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号