首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9618篇
  免费   1112篇
  国内免费   3665篇
测绘学   487篇
大气科学   1711篇
地球物理   3232篇
地质学   5669篇
海洋学   1023篇
天文学   414篇
综合类   719篇
自然地理   1140篇
  2024年   70篇
  2023年   194篇
  2022年   135篇
  2021年   204篇
  2020年   86篇
  2019年   145篇
  2018年   207篇
  2017年   71篇
  2016年   156篇
  2015年   157篇
  2014年   301篇
  2013年   263篇
  2012年   318篇
  2011年   394篇
  2010年   226篇
  2009年   319篇
  2008年   338篇
  2007年   455篇
  2006年   497篇
  2005年   576篇
  2004年   554篇
  2003年   380篇
  2002年   455篇
  2001年   491篇
  2000年   508篇
  1999年   238篇
  1998年   185篇
  1997年   196篇
  1996年   168篇
  1995年   210篇
  1994年   178篇
  1993年   382篇
  1992年   336篇
  1991年   438篇
  1990年   390篇
  1989年   420篇
  1988年   444篇
  1987年   372篇
  1986年   264篇
  1985年   359篇
  1984年   294篇
  1983年   217篇
  1982年   170篇
  1981年   121篇
  1980年   174篇
  1964年   90篇
  1960年   53篇
  1959年   110篇
  1958年   120篇
  1957年   128篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
211.
Metals, including heavy metals and metalloids, are a common group of environmental contaminants. Their sources in the environment are geogenic or anthropogenic. The growing trend in global industrialization ensures that more metals could be dispersed even in pristine ecosystems. To fuel industrialization, more metal ore mines have to be discovered and explored. These explorations often result in landscape disturbance, soil degradation and environmental contamination by unwanted mining constituents. Mine tailings brought up to the ground surface often serve as the main source of contaminants when these pyrite-rich materials oxidize. The oxidation of mine tailings results in proton generation, coupled with the dissolution of metals and other cations Unwanted anionic constituents are also produced. The so-called "acid mine drainage" may affect the productivity of farmlands and stability of receiving streams and other bodies of water-acidifying the waters and enriching the ecosystem with metals, i.e., high total dissolved solids. The acidified overburden materials become inhospitable to plant and microbial life as they are typically low in organic matter content and infertile. This exposes the landscape to runoff and erosion.  相似文献   
212.
This is a 4-year longitudinal study to evaluate changes to the environment and exposure of young children associated with the introduction of methylcyclopentadienyl manganese tricarbonyl (MMT) into Australia in 2000. The cohort includes 57 females and 56 males; age range of 0.29 to 3.9 years. Samples are collected every 6 months from children in residences located at varying distances from major traffic thoroughfares in Sydney. Environmental samples: air, house and day care dustfall, soil, dust sweepings and gasoline. Samples from children: blood, urine, handwipes prior to and after playing outdoors, and a 6-day duplicate diet. All samples are analyzed for a suite of 20 elements using ICP-MS. Results are presented for the first three 6-month sampling periods for Pb and Mn. For dustfall accumulation, there was no significant change over the 3 sampling periods (time) for Pb or Mn, and a positive relationship between ‘traffic exposure' (traffic volume and proximity to the road) and Pb but not Mn. For handwipes, Pb and Mn in wipes taken from children after playing outdoors were usually significantly greater than for wipes taken prior to playing. There was no significant association between Pb or Mn in handwipes with traffic exposure. Dustfall accumulation was a significant predictor for Pb in the handwipes, and dust sweepings were a significant predictor of Mn in handwipes.  相似文献   
213.
Selenium (Se) is an essential micronutrient to biota, but can become a potent toxicant at elevated concentrations. The natural sources and chemical properties of Se species make the boundary between deficiency and toxicity narrow for some biota, with both phenomena common around the globe. Large areas of farmland in the Colorado River Basin (CRB) generate salinized drainage water with Se concentrations much higher than 5 μg/L, the U.S. Environmental Protection Agency chronic water-quality criterion for the protection of aquatic life. We have carried out detailed field and laboratory studies to investigate Se geochemistry and remediation in two of these areas: the Middle Green River Basin, Utah and the Salton Sea Basin, California, located respectively in the Upper and Lower CRB. Results from these and other studies show that approximately 90% of the dissolved Se in the Colorado River and its tributaries originally is derived from the Upper Cretaceous Mancos Shale and equivalent pyritic marine units that outcrop in the Upper CRB. Selenium is mobilized commonly by biogeochemical oxidation of this pyritic shale and is concentrated mainly as selenate (SeO4^2-) in soils and agricultural drainage water of dry climates by evaporation. Minor (0%-5%) amounts of Se are present as the selenite species (HSeO3^-) and (SEO3^2-), but these species and the more reduced species, elemental Se (SeO) and selenide (Se^2-), have much lower solubility and/or have high sorptive affinity towards organic matter, clay minerals and iron oxyhydroxides. The concentration of dissolved Se (-2.5 μg/L) and salinity in the Lower Colorado River water are among the highest of the world major rivers. Because of low precipitation (7 cm/a) and extreme evapotranspiration (-1.8 m/a) rates in the Salton Sea Basin, California, Se values in irrigation water imported from the Colorado River increase to 〉300 μg/L in drainage wastewater. Removal of Se from contaminated wastewater by nanofiltration membranes was demonstrated in laboratory and pilot-scale field experiments.  相似文献   
214.
Natural uranium has three isotopes, ^238U, ^235U and ^234U, with natural abundances of 99.27 atom %, 0.72% and 0.0055%, respectively. Only ^235U is fissile and the production of nuclear fuel and nuclear weapons involves enrichment of uranium in ^235U. This process also results in separation of ^234U from ^238U, leaving depleted uranium (DU), with typical ^234U/^238U and ^235U/^238U activity ratios of about 0.19 and 0.013, respectively, as a waste product. The high density, high melting and boiling points and chemical stability of uranium and the availability of DU in relatively pure form mean that DU has many uses, including armour-piercing munitions. Such munitions have been developed in the UK since the 1960s and testing has been carried out by the Ministry of Defence (MoD) at firing ranges such as Dundrennan, SW Scotland and Eskmeals, NW England. The firing of DU munitions can result in the dispersion of DU and its combustion products (oxides) as aerosols or as larger fragments, with the potential for human exposure either directly at the site of detonation or via post-depositional migration in the environment. The aim of this work was to investigate the potential environmental mobility of DU by characterizing the associations of U in soil porewaters with increasing distance from a firing site. To this end, several soil cores located down-wind of the firing site at Dundrennan, near Kirkcudbright, SW Scotland, were collected in May 2006. These were sectioned on-site into 1- or 2-cm depth intervals and porewaters were isolated by centfifugation (10 minutes; 8873 g) on return to the laboratory. Following filtration through 0.2-micron cellulose nitrate filters, the porewaters were analyzed by ICP-QMS (U concentration) and ICP-OES (Fe, Al, Ca, Mg, Mn concentrations). Sub-samples were also subjected to centrifugal ultrafiltration (100, 30, and 3 kD) and to gel electrophoretic fractionation (agarose; 0.045 M Tris-borate; 20 mA, 30 minutes). Results showed that U was present at up to 4 μg/L in the soil porewater and that the associations of U varied with sample location and soil depth.  相似文献   
215.
For the sake of cost and potential environmental risk, it is necessary to minimize the amount of chelates used in chemically-enhanced phytoextraction. In the present study, a biodegradable chelating agent, EDDS was added in a hot solution at 90℃ to the soil in which garland chrysanthemum (Chrysanthemum coronarium L.) and beans (Phaseolus vulgaris L., white bean) were growing. The application of hot chelate solutions was much more efficient than the application of normal chelate solutions (25℃) in improving the uptake of heavy metals by plants. When 1 mmol kg1 of EDDS as a hot solution was applied to soil, the concentrations ofCu, Zn and Cd and the total phytoextraction by the shoots of the two plant species exceeded or approximated those in the shoots of plants treated with 5 mmol kg^-1 of normal EDTA solution. The concentrations of metals in the shoots of beans were significantly correlated with the relative electrolyte leakage rate of root cells, indicating that the root damage resulting from the hot solution might play an important role in the process of chelate-enhanced metal uptake. The soil leaching study demonstrated that decreasing the dosage of chelate resulted in decreased concentrations of soluble metals in soils. On the 28th day following the application of chelate, the concentrations of soluble metals in the EDDS treated soil were not significantly different from the concentrations in the control soil to which chelates had not been applied.  相似文献   
216.
Permeable Reactive Barrier (PRB) is an emplacement of inert material (s) in the subsurface, designed to intercept a contaminated plume, provides a preferential flow path through the reactive media, and transforms the contaminant into environmentally acceptable forms to attain concentration remediation goals at the discharge of the barrier. The phenomena, which help in remediation within PRB, are adsorption/sorption, precipitation, oxidation/reduction and biodegradation. Various materials like zero-valent iron, zero-valent bi-metals, natural zeolites, organic carbon, fly ash, zeolites, limestone, activated alumina, apatites, etc. have been tried by many researchers to remove organic and inorganic contaminants. In USA, Canada, and many European countries commercial full-scale and pilot scale PRBs are successfully working. The design and installation of full scale PRBs needs laboratory treatability and dynamic flow column experiments? The concept of PRB is being applied to treat contaminated surface water in the Katedan industrial area, Hyderabad, India. National Geophysical Research Institute (NGRI), Hyderabad, India, conducted systematic studies in collaboration with Norwegian Geotechnical Institute (NGI), Norway, to develop PRB technique to decontaminate the surface water pollution due to industrial effluent. A site assessment study in the Katedan Industrial Area, were carried out and water, soil and sediment from the lakes of the area were found to be polluted with high concentrations of heavy metals like As, Pb, Cr, Cd, Ni, etc. Adsorption studies at NGRI with synthetic samples and in-situ industrial effluent using different reactive media for removing contaminants like arsenic, chromium, cadmium, copper, nickel, lead and zinc have been carried out and yielded satisfactory results. The performance of zero-valent iron and limestone is encouraging in removing As,  相似文献   
217.
Flood and desiccation are perceived as two most critical and influential disasters which contradict between causes and consequences. Flood occurs when the water surface could no longer flow the whole water flow, thus, the water flooded. Contradicted to that, desiccation occurs when the water flow contains a low volume of water deposit, thus, the water requirement exceeds the available potential. That condition was caused by land utilization as the consequences due to the increased land requirement for housing or industrial needs. An attempt to overcome the flood, nowadays, is implemented mostly in a structural way, through building canals, implementing rivers normalization, building gateways or building flood control pump which are more directed toward the flood direction in order to increase the surface flow in an immediate maner to the sea. However, the effort to overcome the flood its self, could be more effective if followed by an effort to increase the soil ability to absorb natural recharge or artificial recharge or by refilling the water into the earth surface. Absorption reservoir used as one of technology alternatives (artificial recharge) could also be used to support the attempt to overcome flood and desiccation. Absorption reservoir is a dam which was designed according to the basic principles, such as the bottom surface of the reservoir that has a high permeability surface; the surface of the reservoir water is higher (higher aquifer) along with a high permeability, considering the availability of water source that has been absorbed and its quality; considering the aquifer category on the water absorption dam;  相似文献   
218.
Phosphogypsum is a waste by-product of the phosphate fertilizer industry that has relatively high concentrations of some U decay-series radionuclides such as ^226Ra and ^210Pb. The distribution and environmental mobility of radionuclides in phosphogypsum are an important concern because this gypsum by-product is used for wallboard, in agriculture and as a soil amendment. This study determined the distribution of ^226Ra, ^210Pb, within phosphogypsum stacks of varying age and among three size fractions (coarse: 〈0.212 mm; medium: 0.212-0.053 mm; fine: 〈0.053 mm), in phosphogypsum derived from Aqaba and Eshidiya fertilizer plants. The results indicated that ^226Ra and ^210Pb were generally uniformly distributed in phosphogypsum stacks and showed no significant difference in the concentration of these elements with the age of stack. In the Aqaba phosphogypsum ^226Ra was slightly 10% enriched in the coarse fraction, while ^210Pb was 10% enriched in the free size fraction. In the Eshidiya phosphogypsum ^226Ra and ^210Pb contents were both relatively enriched (10%) in the fine size fraction.  相似文献   
219.
1 INTRODUCTIONQuality of chemical properties of flooded soils isgenerally determined by salinity and alkalinity,bothof these acts as inhibiting factors of plant growth.Thecorrelation of electrical conductivity and other analysisindex has been reported by …  相似文献   
220.
All geochemical measurements require the taking of field samples, but the uncertainty that this process causes is often ignored when assessing the reliability of the interpretation, of the geochemistry or the health implications. Recently devised methods for the estimation, optimisation and reduction of this uncertainty have been evaluated by their application to the investigation of contaminated land. Uncertainty of measurement caused by primary sampling has been estimated for a range of six different contaminated land site investigations, using an increasingly recognized procedure. These site investigations were selected to reflect a wide range of different sizes, contaminants (organic and metals), previous land uses (e.g. tin mining, railway sidings and gas works), intended future use (housing to nature reserves) and routinely applied sampling methods. The results showed that the uncertainty on measurements was substantial, ranging from 25% to 186% of the concentration values at the different sites. Sampling was identified as the dominant source of the uncertainty (〉70% of measurement uncertainty) in most cases. The fitness-for-purpose of the measurements was judged using the optimized contaminated land investigation (OCLI) method. This identifies the optimal level of uncertainty that reduces to overall financial loss caused by the measurement procedures and the misclassification of the contamination, caused by the uncertainty. Generally the uncertainty of the actual measurements made in these different site investigations was found to be sub-optimal, and too large by a factor of approximately two. The uncertainty is usually limited by the sampling, but this can be reduced by increasing the sample mass by a factor of 4 (predicted by sampling theory). It is concluded that knowing the value of the uncertainty enables the interpretation to be made more reliable, and that sampling is the main factor limiting most investigations. This new approach quantifies this problem for the first time, and allows sampling procedures to be critically evaluated, and modified, to improve the reliability of the geochemical assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号