首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72210篇
  免费   1375篇
  国内免费   529篇
测绘学   1796篇
大气科学   5845篇
地球物理   15419篇
地质学   23805篇
海洋学   6044篇
天文学   16059篇
综合类   161篇
自然地理   4985篇
  2021年   459篇
  2020年   611篇
  2019年   607篇
  2018年   1209篇
  2017年   1197篇
  2016年   1730篇
  2015年   1268篇
  2014年   1714篇
  2013年   3701篇
  2012年   1842篇
  2011年   2604篇
  2010年   2258篇
  2009年   3233篇
  2008年   2882篇
  2007年   2584篇
  2006年   2641篇
  2005年   2293篇
  2004年   2384篇
  2003年   2177篇
  2002年   2086篇
  2001年   1875篇
  2000年   1830篇
  1999年   1568篇
  1998年   1545篇
  1997年   1549篇
  1996年   1326篇
  1995年   1261篇
  1994年   1143篇
  1993年   1035篇
  1992年   979篇
  1991年   840篇
  1990年   1061篇
  1989年   881篇
  1988年   777篇
  1987年   966篇
  1986年   849篇
  1985年   1055篇
  1984年   1214篇
  1983年   1157篇
  1982年   1057篇
  1981年   1007篇
  1980年   850篇
  1979年   843篇
  1978年   892篇
  1977年   820篇
  1976年   766篇
  1975年   717篇
  1974年   719篇
  1973年   740篇
  1972年   457篇
排序方式: 共有10000条查询结果,搜索用时 85 毫秒
951.
The palaeomagnetism of 54 dykes sampled from the many swarms that intrude the Yilgarn Block of Western Australia shows that their directions of magnetization fall into five distinct groups.Preliminary Rb-Sr age determinations made on samples used in the study however, indicate that for one, and possibly two of those groups, the dykes belong to two widely different ages suggesting that the palaeomagnetic field has been sampled at two widely separated points in time but when its direction was essentially the same. The seven groups of directions thus obtained imply that the dykes belong to at least six, possibly seven periods of intrusion. Relative-age information relating to four of those periods, determined from cross-cutting and baked contact studies, agrees with that obtained radiometrically.The poles and ages of the groups are as follows: Group YA dykes (c. 2500 or c. 1700 m.y.) 21.7S 133.7E (A95 = 17.9°) Group YB dykes (750—700 m.y.) 19.9S 282.0E (A95 = 28.1°) Group YC dykes (1500 m.y., Group YB) 79.7N 2.7E (A95 = 13.0°) Group YD dykes (1700 m.y.) 23.5S 46.1E (A95 = 9.9°) Group YE dykes (c. 2500 m.y.) 28.3S 0.4E (A95 = 31.0°) Group YF dykes (c. 1700 m.y.) 24.7N 101.8E (A95 = 14.0°) Ravensthorpe dykes (2500 ± 100 m.y.) 38.3S 136.2E (A95 = 25.5°)Results from eight samples of the 1390 ± 140 m.y. Morawa Lavas of the Billeranga Hills yield a pole at 42.8N 22.4E (A95 = 14.7°).  相似文献   
952.
The Lufilian arc of Central Africa (also called Katangan belt or Copperbelt) is a zone of low to highgrade metasedimentary (and subsidiary igneous) rocks of Neoproterozoic age hosting highgrade CuCoU and PbZn mineralizations. The Lufilian arc is located between the Congo and Kalahari cratons and defines a structure which is convex to the north. Three major phases of deformation characterize the construction of the Lufilian arc. The first phase (D1) called the “Kolwezian phase” developed folds and thrust sheets with a northward transport direction. D1 deformation occurred in the Lufilian arc between ca. 800 and 710 Ma, with a peak in the range 790–750 Ma. It is here correlated with the main deformation in the Zambezi belt. Southward-verging folds with the same trends as the D1 structures were previously linked to a second tectonic event named Kundelunguian phase of the Lufilian orogeny. We show in this paper that they are backfolds developed during D1 along Katangan ramps and especially along the Kibaran foreland. The second phase (D2) of the Lufilian orogeny is the “Monwezi phase” including several large leftlateral strikeslip faults which have been activated successively. During this deformation phase, the eastern block of the belt rotated clockwise, giving the present day NWSE trend of D1 structures in this part of the Lufilian arc, and generating its convex geometry. The Mwembeshi dislocation, the major transcurrent shear zone separating the Zambezi and Lufilian arc, was mostly active during the D2 deformation phase. D2 deformation occurred between ca. 690 and 540 Ma. Such a long time interval is attributed to the migration of strikeslip faults developed sequentially from south to north, and probably to a slow convergence velocity during the collision between the Congo and Kalahari cratons. The third phase (D3) of the Lufilian orogeny is a late event called the “Chilatembo phase”, marked by structures transverse to the trends of the Lufilian arc. This deformation and the post-D2′ uppermost Kundelungu sequence (Ks3 Plateaux Group), are younger than 540 Ma and probably early Paleozoic.  相似文献   
953.
Rb-Sr whole-rock analyses yield a Cambro-Ordovician (495 ± 11 m.y.) sedimentation age for the supposed Precambrian Greenland Group and a late Precambrian age, 680 ± 21 m.y., for parts of the Constant Gneiss, the first confirmation of Precambrian rocks in New Zealand. A Precambrian age for the Greenland Group is thus unlikely and the large area of Upper Cambrian-Lower Ordovician rocks now established can be considered as a lateral equivalent of the fossiliferous Lower Palaeozoic succession of northwest Nelson to the east. The Greenland Group, especially in the Paparoa Range has been affected subsequently by a thermal metamorphic overprint about 360 m.y. ago during the Tuhuan Orogeny. Although the Constant Gneiss must form the local basement to the Greenland Group in north Westland, the former does not appear to be the source of the sediments and the true provenance must lie elsewhere.  相似文献   
954.
955.
This two-year study investigates the relative influence of meteorological variables (precipitation amount and temperature), atmospheric circulation, air mass history, and moisture source region on Irish precipitation oxygen isotopes (δ18Op) on event and monthly timescales. Single predictor correlations reveal that on the event scale, 20% of δ18Op variability is attributable to the amount effect and 7% to the temperature effect while on the monthly timescale the North Atlantic Oscillation accounts for up to 20% of δ18Op variability and the amount and temperature effects are not significant. In comparison, multivariate linear regression reveals that the interaction of temperature and precipitation amount explains up to 40% of δ18Op variance at event and monthly timescales. Five-day kinematic back trajectories suggest that the amount-weighted mean δ18Op value of southerly- and northerly-derived events are lower by 2‰ relative to events derived from the west. Because air mass history and atmospheric circulation appear to influence δ18Op in Ireland, Irish paleo-δ18Op proxy records are best interpreted as reflecting a combination of parameters, not just paleotemperature or paleorainfall.  相似文献   
956.
957.
958.
东昆仑三道湾流纹英安斑岩锆石U-Pb年龄及其地质意义   总被引:2,自引:0,他引:2  
东昆仑格尔木河西三道湾流纹英安斑岩构成火山通道侵出相,侵入到纳赤台群哈拉巴依沟组碎屑岩系中,其形成时代对于造山带火山作用的研究和限定哈拉巴依沟组地层时代均具有重要的意义。采用激光烧蚀多接收器电感耦合等离子体质谱(LA-MC-ICP MS)方法,对三道湾流纹英安斑岩进行了锆石U-Pb定年,结果表明,流纹英安斑岩中25个岩浆锆石206Pb/238U加权平均年龄为425.9 ± 2.6 Ma,它被解释为流纹英安斑岩的结晶年龄,说明三道湾次火山岩所代表的火山通道为早古生代造山晚期牦牛山组火山岩形成时的火山喷发中心之一,而非晚侏罗世次火山岩。野外地质关系和次火山岩年龄可以限定哈拉巴依沟组形成于中志留世之前。   相似文献   
959.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   
960.
High resolution profiles of the Mg xii 8.42 Å line in the solar X-ray spectrum were recorded from the Intercosmos 7 satellite. The Mg xii line intensity provides a sensitive indicator of the hot plasma content (T ? 3 × 106 K) in coronal condensations and X-ray flare volumes. The ratio of the line intensity to the intensity of the adjacent continuum has been used to compute approximate thermal models of the emitting regions. For all the investigated coronal condensations the temperature distribution of plasma has been found to be a function monotonically decreasing with temperature. But for some X-ray bursts there occurred a distinct excess of the hot plasma of temperature between 6–10 × 106K. FWHM values of the Mg xii line profiles have been used to estimate ion temperature in the emitting regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号