首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   5篇
测绘学   3篇
大气科学   4篇
地球物理   35篇
地质学   56篇
海洋学   18篇
天文学   7篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1968年   1篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
71.
In order to find the relationship between the shaft lining stability and the coal extraction operation, a 3D numerical model of strata layers and shaft lining was established for simulating the influence of coal extraction operation on shaft lining. Certain factors including mining depth, safety pillar width, mining width and mining height were taken as the influence factors in the simulation. The results indicated that the coal extraction could lead to the initiation of the failure in the aquifer and rock layers. As the mining depth increases, the shear strain increment in aquifer becomes small. In this case, the distance between mining panel and aquifer should be larger than 220 m and the safety pillar width should not <70 m. The maximum principal stress in aquifer had a little relation to mining operations. The mining panel width should not exceed 50 m without any support.  相似文献   
72.
Rapid urbanization in the Jakarta area has become a severe subsurface environmental issue as it entails groundwater level decline and land subsidence caused by excessive groundwater pumping. In this study, apparent groundwater age rejuvenation in the deep aquifer under DKI Jakarta was found by comparing 14C activities between 1985 and 2008. We discussed the use of a numerical groundwater flow model to evaluate the rejuvenation process in this urbanized area. When considering the deep aquifer in the DKI Jakarta area, we can assume six direction fluxes toward the aquifer: two vertical fluxes (downward and upward flux) and four horizontal fluxes (northern, southern, western, and eastern flux). Results of model calculations show that the greatest groundwater flux among six flux directions became ‘vertical downward flux’, which means that shallower groundwater intrudes into the deep one because of excessive groundwater pumping from the mid‐1980s. This flux grows about 50% during the 2000s. This result is consistent with the detection of CFC‐12 and SF6, which functions as an indicator of young groundwater even in the deep groundwater. The rejuvenation ratio ‘R’ was determined using 14C activity in the groundwater; R increases with the CFC‐12 concentration and both show good correlation. Furthermore, we estimated the ‘vertical downward flux’ at each well's screen depth using model estimation. Results show that this flux is greater in the urban groundwater depression area and especially at shallower parts of the deep aquifer, and that it affects the magnitude of the shallow groundwater intrusion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
73.
A relation between surface-wave magnitude Ms and fault area S for great earthquakes has been proposed
log S 2Ms − 11.5 (Ms > 7.5)
A similar formula has been also derived for body-wave magnitude mb* redetermined from maximum amplitudes of short-period P-wavetrains
log S ∝ 1.7 mb*
These are quite different from a theoretical relation expected on the basis of long-wave approximation. Because wavelengths of seismic waves used for the above magnitudes are very short compared to the size of earthquake sources, these relations represent the short-period nature of the earthquake process. The statistical theory of extreme values has been applied to understand the relations considering that the component waves which constitute the wavetrains for mb* and Ms determinations originate from the random fracture of fault heterogeneities.  相似文献   
74.
Groundwater flow exerts a crucial control on the boundary between the sea and freshwater and is thus a key factor for preserving groundwater resources and preventing seawater intrusion in coastal areas. Although it is highly probable that geological faults in coastal areas affect groundwater flow patterns, the effect has not been described yet in detail. This study is aimed at detecting and imaging groundwater flow and its temporal change around a fault in a coastal area through resistivity and chargeability distributions using electrical sounding. The Okoshiki area in central Kyushu, southwest Japan, was selected as a case study area, because of the presence of Kamiouda Fault. The measurements were conducted along six lines of both parallel and perpendicular orientations to the coastline. A feature suggesting a fault zone was evident on two lines. Through the temporal change of resistivity, movement and mixing processes of the seawater and freshwater during the ebb, low and flood tides were interpreted. A conceptual model of the processes was constructed in which a fault zone and the configuration of bedrock are dominant elements by acting as a selective path and a barrier to the groundwater flow, respectively.  相似文献   
75.
Abstract: Synchrotron radiation-induced X–ray fluorescence (SR–XRF) and conventional X-ray fluorescence (XRF) analyses were applied to determine the distributions of iron, manganese, calcium, titanium, and silicon, and chemical forms of iron and trace manganese in three banded iron formation (BIF) samples. The XRF imagings on the weathered and altered BIF from the Cleaverville Formation (3. 3–3. 1 Gyr), Western Australia, showed redistributions of iron, calcium, and manganese with the disappearance of the primary bandings, while, in contrast, titanium preserved its primary depositional distribution. The XRF imagings on the BIF from the Hamersley Group (2. 5 Gyr), Western Australia, showed that manganese and titanium distribute originally at boundary region between the iron-rich mesoband and the silica-rich mesoband. The X-ray Absorption Near Edge Structure (XANES) analysis revealed that the chemical forms of manganese and iron well represent the rhythmic change of the bandings.  相似文献   
76.
The horizontal distribution of the epipelagic zooplankton communities in the western Arctic Ocean was studied during August–October 2008. Zooplankton abundance and biomass were higher in the Chukchi Sea, and ranged from 3,000 to 274,000 ind. m?2 and 5–678 g WM m?2, respectively. Copepods were the most dominant taxa and comprised 37?94% of zooplankton abundance. For calanoid copepods, 30 species belonging to 20 genera were identified. Based on the copepod abundance, their communities were classified into three groups using a cluster analysis. The horizontal distribution of each group was well synchronized with depth zones, defined here as Shelf, Slope and Basin. Neritic Pacific copepods were the dominant species in the Shelf zone. Arctic copepods were substantially greater in the Slope zone than the other regions. Mesopelagic copepods were greater in the Basin zone than the other regions. Stage compositions of large-sized Arctic copepods (Calanus glacialis and Metridia longa) were characterized by the dominance of late copepodid stages in the Basin. Both the abundance and stage compositions of large copepods corresponded well with Chl. a concentrations in each region, with high Chl. a in the Shelf and Slope supporting reproduction of copepods resulting in high abundance dominated by early copepodid stages.  相似文献   
77.
Using data for one year, we examined the vertical wind speed profileson a mountain slope covered with forest in northern Thailand undera tropical monsoon climate. We defined two profile patterns: higherwind speeds at greater heights (Pattern 1) and lower wind speeds atgreater heights (Pattern 2). We classified 9.4% of the data as Pattern 2;this pattern tended to occur during the night, at low wind speeds, and with high outgoing longwave radiation. In addition, stable stratification anddecoupling between the canopy surface air and the overlying layers wereobserved when Pattern 2 occurred frequently. These facts suggested thatPattern 2 was caused by a nocturnal drainage flow. The occurrence ofPattern 2 showed a clear seasonal trend, indicating that there is a seasonaltrend in the occurrence of nocturnal drainage flows. Pattern 2 was observedmore frequently between August and February and less frequently betweenMarch and July. This corresponded to the seasonal trend in wind speed, butdid not correspond to the seasonal trend in the outgoing longwave radiation.  相似文献   
78.
We examined the interannual variability of Pacific Winter Water (PWW), both upstream in the northeastern Chukchi Sea and Barrow Canyon using mooring observations from 2000 to 2006, and downstream in the Canada Basin using hydrographic data acquired in 2002–2006. The interannual variation of PWW salinity is governed by two factors: (1) variability in the salinity of Pacific Water that flows northward through Bering Strait in winter; and (2) the input of salt associated with sea ice formation during winter in an intermittent coastal polynya located along the Alaskan coast between Cape Lisburne and Point Barrow. During the winters of 2000/2001 and 2001/2002 an increased transport of cold and saline PWW (S?>?33.5) to the basin via Barrow Canyon was observed. In 2000/2001 enhanced ice formation in the polynya contributed to the increased salinity of PWW, whereas in 2001/2002 the salinity of water entering through the Bering Strait was higher, and this resulted in more saline PWW being delivered to the basin. In the following four winters (2002/2003, 2003/2004, 2004/2005 and 2005/2006) the transport of cold and saline PWW in winter to the basin was less than that in the two preceding winters. In three of these four winters (2003/2004 being the exception) the coastal polynya was less active, thus reducing the input of salt due to brine enrichment. In the winter of 2003/2004, however, warmer water within the polynya region constrained ice formation and thus less cold and saline PWW was produced, despite the fact that the coastal polynya was active and frequently open.  相似文献   
79.
The Solar Optical Telescope (SOT) aboard the Solar-B satellite (Hinode) is designed to perform high-precision photometric and polarimetric observations of the Sun in visible light spectra (388 – 668 nm) with a spatial resolution of 0.2 – 0.3 arcsec. The SOT consists of two optically separable components: the Optical Telescope Assembly (OTA), consisting of a 50-cm aperture Gregorian with a collimating lens unit and an active tip-tilt mirror, and an accompanying Focal Plane Package (FPP), housing two filtergraphs and a spectro-polarimeter. The optomechanical and optothermal performance of the OTA is crucial to attain unprecedented high-quality solar observations. We describe in detail the instrument design and expected stable diffraction-limited on-orbit performance of the OTA, the largest state-of-the-art solar telescope yet flown in space.  相似文献   
80.
Yang  Heejun  Tawara  Yasuhiro  Shimada  Jun  Kagabu  Makoto  Okumura  Azusa 《Hydrogeology Journal》2021,29(6):2091-2105

The hydraulic conductivity of an unconfined carbonate aquifer at the uplifted atoll of Minami-Daito, Japan, was evaluated by a combination of cross-spectral analysis, analytical solution, and density-dependent groundwater modeling based on observed groundwater levels in 15 wells and at sea level. The island area was divided into 10 subregions based on island morphology and on inland propagation of ocean tides. The hydraulic conductivity was obtained for each subregion using analytical solutions based on phase lags of M2 constituents of ocean tides at each well by assuming two aquifer thicknesses (300 and 1,800 m) and two effective porosities (0.1 and 0.3). The density-dependent groundwater model evaluated the hydraulic conductivity of the subregions by reproducing observed groundwater levels. The hydraulic conductivity in the subregions was estimated as 3.46?×?10?3 to 6.35?×?10?2 m/s for aquifer thickness of 300 m and effective porosity of 0.1, and as 1.73?×?10?3 to 3.17?×?10?2 m/s for aquifer thickness of 1,800 m and the effective porosity of 0.3. It was higher in southern and northern areas, and higher in interior lowland than in the western and eastern areas. Fissures and dolomite distributions on the island control differences of the omnidirectional ocean tidal propagation and cause these differences in hydraulic conductivity. The method used for this study may also be applicable to other small islands that have few or no data for hydraulic conductivity.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号