首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   5篇
地质学   12篇
海洋学   50篇
天文学   6篇
自然地理   2篇
  2019年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2005年   1篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1970年   1篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
11.
We estimated wet-bulb globe temperature (WBGT) using measured meteorological data to understand the bioclimates of human living spaces during the summer season. Our research focused on commercial and residential areas of Okayama City, Japan (population ~700,000). The commercial spaces (CO) mainly consisted of multi-story office buildings, whereas the residential spaces (RE) consisted of one- or two-story residential buildings. On a fine day with southeast winds, the spatially averaged WBGT measured in the CO was higher than that in the RE. The difference was statistically significant and would have caused noticeable discomfort and a high risk of heat disorder for occupants of the CO over the long term. For instance, at 1900 Japan Standard Time (JST), the maximum difference in the WBGT between the CO and RE sites was 2.0°C (23.5°C for the CO and 21.5°C for the RE). From 1800 to 1900 JST, the wet-bulb temperature in the CO was still 1.5–2.0°C higher than that in the RE, even though both areas had the same dry-bulb temperature. This indicates that the CO retained greater amounts of water vapor for longer periods compared to the RE. The wet-bulb temperature in the CO increased rapidly at most observation points when the southeast sea breeze arrived. In contrast, in the RE, the wet-bulb temperature decreased until evening. This difference was caused by moist air transported from a river about 1 km upwind from the CO. The moist air forced an increase in the WBGT and elevated the risk of heat disorder in the CO. The spatially averaged globe temperature of the CO at 1500 JST was 6.2°C lower than that at the RE, causing the WBGT of the CO to decrease. The results suggest that the higher WBGT in the CO was caused by higher wet-bulb temperatures. On a day with southwest winds, the CO and RE showed no difference in WBGT because the river was not included in the upwind source area.  相似文献   
12.
Dense molecular medium plays essential roles in galaxies. As demonstrated by the tight and linear correlation between HCN(1–0) and FIR luminosities among star-forming galaxies, from very nearby to high-z ones, the observation of a dense molecular component is indispensable to understand the star formation laws in galaxies. In order to obtain a general picture of the global distributions of dense molecular medium in normal star-forming galaxies, we have conducted an extragalactic CO(3–2) imaging survey of nearby spiral galaxies using the Atacama Submillimeter Telescope Experiment (ASTE). From the survey (ADIoS; ASTE Dense gas Imaging of Star-forming galaxies), CO(3–2) images of M 83 and NGC 986 are presented. Emphasis is placed on the correlation between the CO(3–2)/CO(1–0) ratio and the star formation efficiency in galaxies. In the central regions of some active galaxies, on the other hand, we often find enhanced or overluminous HCN(1–0) emission. The HCN(1–0)/CO(1–0) and HCN(1–0)/HCO+(1–0) intensities are often enhanced up to ∼0.2–0.3 and ∼2–3, respectively. Such elevated ratios have never been observed in the nuclear starburst regions. One possible explanation for these high HCN(1–0)/CO(1–0) and HCN(1–0)/HCO+(1–0) ratios is X-ray induced chemistry in X-ray dominated regions (XDRs), i.e., the overabundance of the HCN molecule in the X-ray irradiated dense molecular tori. If this view is true, the known tight correlation between HCN(1–0) and the star-formation rate breaks in the vicinity of active nuclei. Although the interpretation of these ratios is still an open question, these ratios have a great potential for a new diagnostic tool for the energy sources of dusty galaxies in the ALMA era because these molecular lines are free from dust extinction.  相似文献   
13.
Oceanic current data in the warm pool region of the western equatorial Pacific measured by upward-looking moored Acoustic Doppler Current Profilers at two equatorial sites (147°E and 154°E) and two off-equatorial sites (2°N and 2°S, 156°E) during TOGA/COARE Intensive Observing Period (IOP) from November 1992 to February 1993 are used to examine short-term variabilities in the upper layer above 160–240 m. In time series of the zonal and meridional currents in many layers, spectral peaks are found at periods around 2 days and 4 days in addition to high energies in a period range longer than 10 days. The signal with the period of about 2 days has significantly high energies at all sites, and its magnitude is higher for the meridional current than for the zonal one. This signal is especially active in the first half of IOP from November to December in 1992. In this period, the quasi-2-day signal in the current field is coherent between northern (2°N) and southern (2°S) stations, but it has no evident relationship with that in the surface wind field around the stations. The quasi-4-day signal with the period of about 4 days has highest energies in layers above 160 m at the southern station, and is coherent between northern and southern stations. Besides, the signal at the station of 2°S has a significantly high coherence with that in the wind at the southern station, suggesting that it is a local phenomenon.  相似文献   
14.
Hydrographic data show that the meridional deep current at 47°N is weak and southward in northeastern North Pacific; the strong northward current expected for an upwelling in a flat-bottom ocean is absent. This may imply that the eastward-rising bottom slope in the Northeast Pacific Basin contributes to the overturning circulation. After analysis of observational data, we examine the bottom-slope effect using models in which deep water enters the lower deep layer, upwells to the upper deep layer, and exits laterally. The analytical model is based on geostrophic hydrostatic balance, Sverdrup relation, and vertical advection–diffusion balance of density, and incorporates a small bottom slope and an eastward-increasing upwelling. Due to the sloping bottom, current in the lower deep layer intensifies bottomward, and the intensification is weaker for larger vertical eddy diffusivity (K V), weaker stratification, and smaller eastward increase in upwelling. Varying the value of K V changes the vertical structure and direction of the current; the current is more barotropic and flows further eastward as K V increases. The eastward current is reproduced with the numerical model that incorporates the realistic bottom-slope gradient and includes boundary currents. The interior current flows eastward primarily, runs up the bottom slope, and produces an upwelling. The eastward current has a realistic volume transport that is similar to the net inflow, unlike the large northward current for a flat bottom. The upwelling water in the upper deep layer flows southward and then westward in the southern region, although it may partly upwell further into the intermediate layer.  相似文献   
15.
Variations of water and flow in Sagami Bay in relation to the Kuroshio path variations are examined by using 100m-depth temperature and salinity data from 25 stations as well as sea level data from five stations (Minami-Izu, ItÔ, Ôshima, Aburatsubo, Mera). In regard to temperature, anomalies from the mean seasonal variations are used. Results show that water properties are clearly different between the three typical paths of the Kuroshio. The difference is more remarkable in temperature than in salinity; temperature is higher during the typical large-eander (LM) path, and lower during the offshore non-large-meander (NLM) path, compared with the nearshore NLM path. Temperature anomaly and salinity distributions, as well as the Ôshima minus Minami-Izu and Ôshima minus Mera sea-level differences strongly suggest that the flows during the typical LM path are distributed as hitherto described in past studies, that is, water in the mouth region of the bay flows clockwise around Ôshima from the west channel to the east channel, and a counterclockwise eddy exists in the interior. On the other hand, flows during the nearshore and offshore NLM paths seem to be quite different from those during the typical LM path; velocities are very weak, and the directions of circulation is frequently reversed. This tendency also can be seen during parts of LM period in which the Kuroshio takes a non-typical LM path.Water properties in Sagami Bay are most characteristic during transitions between nearshore and offshore NLM paths. During transitions from nearshore to offshore NLM paths, temperatures are extremely high as a whole in the bay, while during reverse transitions, both temperatures and salinities are very low in the entire region.  相似文献   
16.
Sea levels south of Japan from 1964 to 1975 are examined in terms of the nearshore and offshore non-large-meander (NLM) paths of the Kuroshio and the transitions between them.The sea-level anomalies from the annual variations on the south coast of Japan are much larger during the transition from the nearshore to offshore NLM paths than during the reverse transition by 9 cm on average. This characteristic can be seen only in the coastal region of the Kuroshio-flowing area, so that the sea-level difference of Naze minus Nishinoomote (indicator of Kuroshio velocity) during the offshore to nearshore transition is larger by 15 cm than during the reverse transition.The transition from the offshore to nearshore NLM paths occurs when the velocity of the Kuroshio is large or increasing, while the nearshore to offshore transition occurs when it is small or decreasing. The former transition occurs whenever the velocity increases greatly, whereas the latter one does not always occur even though the velocity decreases.The sea-level difference between Kushimoto and Uragami is highly coherent with the alternate appearance of the nearshore and offshore NLM paths. Offshore NLM paths longer than 2.5 months appear during large falls of the sea-level difference of Kushimoto minus Uragami, while large rises of the sea-level difference correspond to long-lasting nearshore NLM paths. The mean sea-level difference during the nearshore NLM path is larger by 4 cm than that during the offshore NLM path.  相似文献   
17.
Variations of current velocity of the Kuroshio are examined using the 1965–1983 sea-level difference between Naze and Nishinoomote, located on the offshore and onshore sides of the Kuroshio in the Tokara Strait south of Kyûshû.Interannual variations of Kuroshio velocity are large, especially at periods longer than five years and around 2.1 years. They are almost determined by those of sea level on the offshore side of the Kuroshio. They are highly coherent with the offshore sea level at periods longer than 1.7 years, and incoherent with the onshore sea level at periods longer than 2.8 years.The mean seasonal variation averaged for 19 years is at its maximum in July and at its minimum in the second half of October, with a sharp decrease in August and September. However, such a variation does not repeat every year. Amplitude, dominant period and phase are greatly different by year, and they can be roughly divided into four groups: small-amplitude group, semiannual-period group, and two annual-period groups with different phases. The only feature found in almost all years is a weak velocity from September to December.The amplitude of seasonal variation tends to be large in the formation years of the large meander (LM) of the Kuroshio and small during the LM period. It is also large in the years preceding El Niño, and diminishes remarkably in El Niño years.Kuroshio velocity in the Tokara Strait is incoherent with position of the Kuroshio axis over the Izu Ridge, but highly coherent with 70-day variations of coastal sea levels which are dominant during the LM period.  相似文献   
18.
The barotropic instability of a boundary jet on a beta plane is considered with emphasis on the effect of internal viscosity. An eigenvalue problem for the disturbance equations and its inviscid version are solved by the aid of numerical methods, and instability characteristics are determined as functions of the Reynolds numberR for various values of the beta-parameter. Typical disturbance structures (eigenfunctions) are also computed. Numerical examples show that the minimum critical Reynolds numberR cr for instability is smaller than 100. At a Reynolds number of the order of hundreds, there appears a second mode of instability in addition to the first unstable mode originating atR cr ; a kind of ‘resonance’ between the first and second eigenvalues occurs at the particular value ofR. The neutral stability curves are accordingly multi-looped. Although each of the two unstable modes asymptotically approaches its inviscid counterpart asR→∞, the asymptotic approach to the inviscid limit is rather slow and the effect of varyingR is conspicuous even atR∼O (104). It is thus demonstrated that the Reynolds number is an essential stability parameter for real boundary jets. The main part of the material contained in this paper was presented at 1981-Autumn Assembly of the Oceanographical Society of Japan.  相似文献   
19.
Index species of zooplankton of the Oyashio water are found in and beneath the salinity minimum layer in Sagami Bay. In order to clarify the intrusion path of the intermediate Oyashio Water (or the water of the Mixed Water Region), the oceanographic conditions off the Boso Peninsula are studied by using available hydrographic data obtained mainly by Japan Meteorological Agency. The cross-sectional salinity distribution along KJ line which extends southeastward from off the tip of the peninsula always indicates the existence of a low salinity patch just off the coast in the salinity minimum layer. This water is well separated from the offshore low salinity water which is considered as the water in the western margin of the so-called North Pacific Intermediate Water. We refer to the former water as the coastal salinity-minimum-layer (SML) water and to the latter as the offshore SML water. The coastal SML water is usually bounded by the current zone of the Kuroshio. The existence of the coastal SML water seems to indicate the possible pathway of the intermediate Oyashio water along the Boso Peninsula into Sagami Bay. The detailed water type analysis is made in T-S plane, S-st plane, and O2-st plane. There is no significant difference in distribution ranges of the water types between the coastal SML water and the offshore SML water. However, the water types of the coastal SML water is not uniformly distributed, and the water can be classified into two groups: group A with relatively high oxygen content and relatively low salinity value and group B with relatively low oxygen content and relatively high salinity value. Group A is thought to be associated with strong event-like intrusions, the details of which will be discussed in Part II.  相似文献   
20.
When river water mixes with sea water in estuary area, the concentrations of the dissolved element in river water may be changed by either a simple physical mixing process or some complex chemical processes. It has been clarified in the Chikugogawa River estuary area that the change in concentrations of SO 4 2− , BO 3 3− , Mg2+, Ca2+ and F is only due to the mixing process but the change in concentrations of SiO 3 2− and Al3+ is due to the chemical process in addition to the mixing process.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号