首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12112篇
  免费   879篇
  国内免费   202篇
测绘学   435篇
大气科学   1024篇
地球物理   4259篇
地质学   4471篇
海洋学   735篇
天文学   1441篇
综合类   222篇
自然地理   606篇
  2022年   54篇
  2021年   147篇
  2020年   142篇
  2019年   122篇
  2018年   692篇
  2017年   633篇
  2016年   644篇
  2015年   451篇
  2014年   484篇
  2013年   550篇
  2012年   950篇
  2011年   814篇
  2010年   434篇
  2009年   500篇
  2008年   443篇
  2007年   361篇
  2006年   389篇
  2005年   1027篇
  2004年   1056篇
  2003年   801篇
  2002年   333篇
  2001年   213篇
  2000年   146篇
  1999年   111篇
  1998年   129篇
  1997年   106篇
  1996年   81篇
  1995年   50篇
  1994年   68篇
  1993年   53篇
  1992年   70篇
  1991年   61篇
  1990年   75篇
  1989年   56篇
  1988年   41篇
  1987年   48篇
  1986年   39篇
  1985年   44篇
  1984年   36篇
  1983年   48篇
  1982年   36篇
  1981年   34篇
  1980年   39篇
  1979年   43篇
  1978年   41篇
  1976年   32篇
  1975年   38篇
  1974年   32篇
  1973年   40篇
  1971年   40篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
41.
The Upper Jurassic Tordillo Formation is exposed along the western edge of the Neuquén Basin (west central Argentina) and consists of fluvial strata deposited under arid/semiarid conditions. The pebble composition of conglomerates, mineralogical composition of sandstones and pelitic rocks, and major- and trace-element geochemistry of sandstones, mudstones, and primary pyroclastic deposits are evaluated to determine the provenance and tectonic setting of the sedimentary basin. Conglomerates and sandstones derived almost exclusively from volcanic sources. The stratigraphic sections to the south show a clast population of conglomerates dominated by silicic volcanic fragments and a predominance of feldspathic litharenites. This framework composition records erosion of Triassic–Jurassic synrift volcaniclastic rocks and basement rocks from the Huincul arch, which was exhumed as a result of Late Jurassic inversion. In the northwestern part of the study area, conglomerates show a large proportion of mafic and acidic volcanic rock fragments, and sandstones are characterised by a high content of mafic volcanic rock fragments and plagioclase. These data suggest that the source of the sandstones and conglomerates was primarily the Andean magmatic arc, located west of the Neuquén Basin. The clay mineral assemblage is interpreted as the result of a complex set of factors, including source rock, climate, transport, and diagenesis. Postdepositional processes produced significant variations in the original compositions, especially the fine-grained deposits. The Tordillo sediments are characterised by moderate SiO2 contents, variable abundances of K2O and Na2O, and a relatively high proportion of ferromagnesian elements. The degree of chemical weathering in the source area, expressed as the chemical index of alteration, is low to moderate. The major element geochemistry and Th/Sc, K/Rb, Co/Th, La/Sc, and Cr/Th values point to a significant input of detrital volcanic material of calcalkaline felsic and intermediate composition. However, major element geochemistry is not useful for interpreting the tectonic setting. Discrimination plots based on immobile trace elements, such as Ti, Zr, La, Sc, and Th, show that most data lie in the active continental margin field. Geochemical information is not sufficiently sensitive to differentiate the two different source areas recognized by petrographic and modal analyses of conglomerates and sandstones.  相似文献   
42.
Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H2SO4, pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L−1, were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe–oxyhydroxysulfates (Fe(III)–SO4–H+ solutions) or Fe–oxyhydroxychlorides (Fe(III)–Cl–H+ solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to 6–7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)–SO4–H+ solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)–Cl–H+ solutions.  相似文献   
43.
Flood mapping requires the combination and integration of geomorphological and hydrological-hydraulic methods; however, despite this, there is very little scientific literature that compares and validates both methods. Two types of analysis are addressed in the present article. On the one hand, maps of flood plains have been elaborated using geomorphological evidence and historical flood data in the mountainous area of northwestern Spain, covering an area of more then 232 km2 of floodplains. On the other hand, a hydrometeorological model has been developed (Clark semidistributed unit hydrograph) in the Sarria River basin (155 km2, NW Spain). This basin is not gauged, hence the model was subjected to a goodness-of-fit test of its parameter (curve number) by means of Monte Carlo simulation. The peak flows obtained by means of the hydrological model were used for hydraulic modeling (one-phase, one-dimensional and steady flow) in a 4 km2 urban stretch of the river bed. The delineation of surface areas affected by floods since 1918, as well as those analyzed subsequent to the geomorphological study, reveals a high degree of reliability in the delineation of the flooded areas with frequent recurrence intervals (<50 years). If we compare these flooded surface areas with the estimate obtained by the hydrological-hydraulic method we can see that the latter method overestimates the extent of the surface water by 144% for very frequent recurrence intervals (>10 years) and underestimates it as the recurrence interval increases, by up to 80% less floodplain for exceptional events (>500 years). Finally, a management map is put forth combining the most reliable results available by integrating both methods. Originally presented at the Sixth International Conference on Geomorphology.  相似文献   
44.
45.
Summary The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47′S Lat., 70°43′W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06−0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21−0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between −95 and −75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit. Author’s present address: J. Carrillo-Rosúa, Dpto. de Didáctica de las Ciencias Experimentales, Universidad de Granada, Campus de Cartuja, 18071, Granada, Spain  相似文献   
46.
A methodology for the characterization of deep carbonate aquifers has been developed and applied to El Maestrazgo Jurassic aquifer in Castellón, Spain. Characterization of these aquifer formations, located at more than 300 m deep, consisted of a previous phase of compilation, analysis and synthesis of the existing information about the area, followed by a coordinated combination of different speciality studies: geology, stratigraphy, structural analysis, hydrogeology, hydrochemistry, geophysics and remote sensing. Geological studies included geological mapping, definition of stratigraphical units and facies and structural analysis. The aim of the hydrogeology study was to define aquifer formations, recharge area, aquifer points inventory and groundwater flow directions for the establishment of piezometric and water quality observation nets. Special techniques were applied, like thermal infrared aerial images and the evaluation of submarine groundwater discharge by means of natural radium isotopes. Hydrochemical techniques, including majority elements characterization and stable isotopes (18O, 2H and 3H) determination, allowed classifying hydrochemical facies and establishing a renewal pattern for water within the system. Geophysics was useful in determining the aquifer geometry, the features of the basement and the petrophysical characteristics of the geological formations. Preliminary results show an important tectonic complexity and the possibilities for groundwater uses in the area of study.  相似文献   
47.
48.
49.
Резюме Дабление воздуха, переснитанное иа уровень моря по стандартной атмосфере в Q-коде обозчачается через QNH. Давление воздуха пересчитанное на уровень моря по высотной барометрической формуле обознаеается через QFF. Для целей авиационной службы погоды должны быть известны значения QNH, однако Зе барическое поле на синоптических картах выражается через QFF. С помощью рис. 1 для соответствующей температуры воздуха на станцин и ее высоты н. у. м. можно определить разность значений QFF—QNH при давленин QFF=1000мб. Далее по табл. 2 можно определить поправку для каждого значения QFF отличного от значения QFF при ином давлении, чем 1000мб путем умножения табулированного значения ва разность QFF—1000мб и его алгебраического сложения со значением, полученным по рис. 1.   相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号