首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31652篇
  免费   445篇
  国内免费   955篇
测绘学   1608篇
大气科学   2465篇
地球物理   7000篇
地质学   13930篇
海洋学   1443篇
天文学   2885篇
综合类   2179篇
自然地理   1542篇
  2022年   56篇
  2021年   137篇
  2020年   148篇
  2019年   120篇
  2018年   4943篇
  2017年   4225篇
  2016年   2947篇
  2015年   553篇
  2014年   450篇
  2013年   484篇
  2012年   1351篇
  2011年   3031篇
  2010年   2298篇
  2009年   2642篇
  2008年   2184篇
  2007年   2539篇
  2006年   321篇
  2005年   433篇
  2004年   608篇
  2003年   606篇
  2002年   412篇
  2001年   194篇
  2000年   201篇
  1999年   119篇
  1998年   156篇
  1997年   104篇
  1996年   72篇
  1995年   84篇
  1994年   100篇
  1993年   59篇
  1992年   67篇
  1991年   53篇
  1990年   73篇
  1989年   53篇
  1988年   52篇
  1987年   45篇
  1986年   47篇
  1985年   60篇
  1984年   43篇
  1983年   61篇
  1982年   57篇
  1981年   68篇
  1980年   71篇
  1979年   53篇
  1978年   58篇
  1977年   45篇
  1975年   48篇
  1974年   37篇
  1973年   47篇
  1971年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The vertical position of the streambed–water boundary fluctuates during the course of sediment transport episodes, due to particle entrainment/deposition and bedform migration, amongst other hydraulic and bedload mechanisms. These vertical oscillations define a topmost stratum of the streambed (i.e. the ‘active layer or active depth’), which usually represents the main source of particles entrained during long and high-magnitude bedload transport episodes. The vertical extent of this layer is hence a capital parameter for the quantification of bedload volumes and a major driver of stream ecology in gravel-bed rivers. However, knowledge on how the active depth scales to flow strength and the nature of the different controls on the relation between the flow strength and the active depth is still scarce. In this paper we present a meta-analysis over active depth data coming from ~130 transport episodes extracted from a series of published field studies. We also incorporate our own field data for the rivers Ebro and Muga (unpublished), both in the Iberian Peninsula. We explore the database searching for the influence of flow strength, grain size, streambed mobility and channel morphology on the vertical extent of the active layer. A multivariate statistical analysis (stepwise multiple regression) confirms that the set of selected variables explains a significant amount of variance in the compiled variables. The analysis shows a positive scaling between active depth and flow strength. We have also identified some links between the active depth and particle travel distances. However, these relations are also largely modulated by other fluvial drivers, such as the grain size of the bed surface and the dominant channel macro-bedforms, with remarkable differences between plane-bed, step-pool and riffle-pool channels. © 2020 John Wiley & Sons, Ltd.  相似文献   
982.
The damage distribution in Adra town (south‐eastern Spain) during the 1993 and 1994 Adra earthquakes (5.0 magnitude), that reached a maximum intensity degree of VII (European Macroseismic Scale (EMS scale)), was concentrated mainly in the south‐east zone of the town and the most relevant damage occurred in reinforced concrete (RC) buildings with four or five storeys. In order to evaluate the influence of ground condition on RC building behaviour, geological, geomorphological and geophysical surveys were carried out, and a detailed map of ground surface structure was obtained. Short‐period microtremor observations were performed in 160 sites on a 100m × 100m dimension grid and Nakamura's method was applied in order to determine a distribution map of soil predominant periods. Shorter predominant periods (0.1–0.3 s) were found in mountainous and neighbouring zones and larger periods (greater than 0.5 s) in thicker Holocene alluvial fans. A relationship T = (0.049 ± 0.001)N, where T is the natural period of swaying motion and N is the number of storeys, has been empirically obtained by using microtremor measurements at the top of 38 RC buildings (ranging from 2 to 9 storeys). 1‐D simulation of strong motion on different soil conditions and for several typical RC buildings were computed, using the acceleration record in Adra town of the 1993 earthquake. It is noteworthy that all the aforementioned results show the influence of site effects in the degree and distribution of observed building damage. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
983.
Retrieving the parameters of a seismic source from seismograms involves deconvolving the response of the medium from seismic records. Thus, in general, source parameters are determined from both seismograms and the Green functions describing the properties of the medium in which the earthquake focus is buried. The quality of each of these two datasets is equally significant for the successful determination of source characteristics. As a rule, both sets are subject to contamination by effects that decrease the resolution of the source parameters. Seismic records are generally contaminated by noise that appears as a spurious signal unrelated to the source. Since an improper model of the medium is quite often employed, due to poor knowledge of the seismic velocity of the area under study, and since the hypocentre may be mislocated, the Green functions are not without fault. Thus, structures not modelled by Green functions are assigned to the source, distorting the source mechanism. To demonstrate these effects, we performed a synthetic case study by simulating seismic observations in the Dobrá Voda area of the Little Carpathians region of Slovakia. Simplified 1-D and 3-D laterally inhomogeneous structural models were constructed, and synthetic data were calculated using the 3-D model. Both models were employed during a moment tensor inversion. The synthetic data were contaminated by random noise up to 10 and 20 % of the maximum signal amplitude. We compared the influence of these two effects on retrieving moment tensors, and determined that a poor structural model can be compensated for by high-quality data; and that, in a similar manner, a lack of data can be compensated for by a detailed model of the medium. For examples, five local events from the Dobrá Voda area were processed.  相似文献   
984.
The North Atlantic Oscillation (NAO) is the prominent pattern of winter climate variability that has a strong effect on weather in the North Atlantic region and the adjacent continents. At present, uncertainty prevails as to the mechanisms controlling the variability of the NAO. It is also difficult to explain why the positive phase of the NAO has prevailed over the past 37 years (1972–2008). We found high positive correlation coefficients between geomagnetic activity (used as a measure of solar wind intensity) and the NAO indices that equal 0.76 for 1962–1994 and 0.63 for 1961–2011. Positive correlations of the distribution of surface air temperature with the NAO and similarly with geomagnetic activity occur in the Northern Hemisphere. These results encourage our search for possible causes controlling the NAO. We have found that at times of high geomagnetic activity the NAO index is positive and magnetic reconnection may enable the solar wind to initiate downward winds in the magnetosphere. Wind anomalies originate at the edge of the stratospheric polar vortex and propagate downward through the troposphere taking part in the intensification of the vortex and of the westerlies. Stronger northerly winds over Greenland carry cold air southward and, together with the enhanced westerlies, advect the warm air from the Atlantic along the deep Icelandic low into Eurasia increasing temperatures there. On the other hand, at times of low geomagnetic activity, the NAO index is negative and the stratospheric polar vortex is weak. Warm air from the subtropics is carried into the Arctic and a rapid amplification of planetary waves propagating upward may cause displacement or even splitting of the weak vortex and sudden stratospheric warming. During this negative NAO phase the weakened westerlies allow more cold air to build up over North America and Eurasia.  相似文献   
985.
On Wednesday 11th May 2011 at 6:47 pm (local time) a magnitude 5.1 Mw earthquake occurred 6 km northeast of Lorca with a depth of around 5 km. As a consequence of the shallow depth and the small epicentral distance, important damage was produced in several masonry constructions and even led to the collapse of one of them. Pieces of the facades of several buildings fell down onto the sidewalk, being one of the reasons for the killing of a total of 9 people. The objective of this paper is to describe and analyze the failure patterns observed in reinforced concrete frame buildings with masonry infill walls ranging from 3 to 8 floors in height. Structural as well as non-structural masonry walls suffered important damage that led to redistributions of forces causing in some cases the failure of columns. The importance of the interaction between the structural frames and the infill panels is analyzed by means of non-linear Finite Element Models. The resulting load levels are compared with the member capacities and the changes of the mechanical properties during the seismic event are described and discussed. In the light of the results obtained the observed failure patterns are explained. Some comments are stated concerning the adequacy of the numerical models that are usually used during the design phase for the seismic analysis.  相似文献   
986.
In this work we analyze the tectonic setting of the recent damaging seismic series occurred in the Internal Zones of the eastern Betic Cordillera (SE Spain) and surrounding areas, the tectonic region where took place the 11th May 2011 Mw 5.2 Lorca earthquake. We revisit and make a synthesis of the seven largest and damaging seismic series occurred from 1984 to 2011. We analyze their seismotectonic setting, and their geological sources under the light of recent advances in the knowledge on active faults, neotectonics, seismotectonics and stress regime, with special attention focused on the Lorca Earthquake. These seismic series are characterized by two types of focal mechanisms, produced mainly by two sets of active faults, NNW–SSE to NNE–SSW small (no larger than 20–30 km) extensional faults with some strike slip component, and E–W to NE–SW large strike slip faults (more than 50 km long) with some compressional component (oblique slip faults). The normal fault earthquakes related to the smaller faults are dominant in the interior of large crustal tectonic blocks that are bounded by the large E–W to NE–SW strike-slip faults. The strike slip earthquakes are associated to the reactivation of segments or intersegment regions of the large E–W to NE–SW faults bounding those crustal tectonic blocks. Most of the seismic series studied in this work can be interpreted as part of the background seismicity that occurs within the crustal blocks that are strained under a transpressional regime driven by the major strike slip shear corridors bounding the blocks. The seismotectonic analysis and the phenomenology of the studied series indicate that it is usual the occurrence of damaging compound earthquakes of M  \(\sim \)  5.0 associated with triggering processes driven by coseismic stress transfer. These processes mainly occur in the seismic series generated by NNW–SSE to NNE–SSW faults. These mechanical interaction processes may induce a higher frequency of occurrence of this kind of earthquakes than considered in traditional probabilistic seismic hazard assessments and it should be taken into account in future seismic hazard assessments.  相似文献   
987.
988.
This article points out some particular features conditioning seismic hazard assessments (SHA) in Spain, a region with low–moderate seismicity. Although sized earthquakes occurred in the past, as evidenced by historical documents and neotectonic studies, no large events occurred during the last decades. The absence of strong motion records corresponding to earthquakes with magnitude larger than 5.5 is an important obstacle for the development of ground motion models constrained by local data, with the consequent difficulty in SHA studies. In this paper, some recent developments aiming at providing solutions to these difficulties are presented. Specifically, a strong motion databank containing a massive collection of accelerograms and response spectra from different configurations source-path-site corresponding to earthquakes all over the world is introduced, together with software utilities for its management. A first application of this databank is the development of specific ground motion models for Spain and for the Mediterranean region that predict peak ground accelerations as a function of several definitions of magnitude, distance and soil class. The predictive power of these ground motion models is tested by contrasting their estimates with recently recorded ground motions. The comparison between our ground-motion models with others proposed in the literature for other areas reveals a regular overestimation of the expected ground motions at Spanish sites by the non-local models. Consequently, SHA studies based in external models may overestimate the predicted hazard at the Iberian sites. In the last part of the paper a method for checking whether the response spectra proposed in the Spanish Building Code (NCSE-02) are consistent with actual accelerometric data from recent low magnitude earthquakes is applied. The spectral shapes of the Spanish Building Code NCSE-02 are compared with the response spectral shapes deduced from the available accelerograms by normalising the response spectra with the recorded PGA. It is appreciated that the NCSE-02 spectral shapes are exceeded by a large number of actual spectral shapes for short periods (around 0.2 s), a result to be taken into account in further revisions of the NCSE-02 code. The issues tackled in this work constitute not only an improvement for ground-motion characterisation in Spain, but also provide guidelines of general interest for potential applications in other regions with similar seismicity.  相似文献   
989.
Ocean/ice interaction at the base of deep-drafted Antarctic ice shelves modifies the physical properties of inflowing shelf waters to become Ice Shelf Water (ISW). In contrast to the conditions at the atmosphere/ocean interface, the increased hydrostatic pressure at the glacial base causes gases embedded in the ice to dissolve completely after being released by melting. Helium and neon, with an extremely low solubility, are saturated in glacial meltwater by more than 1000%. At the continental slope in front of the large Antarctic caverns, ISW mixes with ambient waters to form different precursors of Antarctic Bottom Water. A regional ocean circulation model, which uses an explicit formulation of the ocean/ice shelf interaction to describe for the first time the input of noble gases to the Southern Ocean, is presented. The results reveal a long-term variability of the basal mass loss solely controlled by the interaction between waters of the continental shelf and the ice shelf cavern. Modeled helium and neon supersaturations from the Filchner–Ronne Ice Shelf front show a “low-pass” filtering of the inflowing signal due to cavern processes. On circumpolar scales, the simulated helium and neon distributions allow us to quantify the ISW contribution to bottom water, which spreads with the coastal current connecting the major formation sites in Ross and Weddell Seas.
Christian B. RodehackeEmail:
  相似文献   
990.
Strong near-fault ground motion, usually caused by the fault-rupture and characterized by a pulse-like velocity- wave form, often causes dramatic instantaneous seismic energy (Jadhav and Jangid 2006). Some reinforced concrete (RC) bridge columns, even those built according to ductile design principles, were damaged in the 1999 Chi-Chi earthquake. Thus, it is very important to evaluate the seismic response of a RC bridge column to improve its seismic design and prevent future damage. Nonlinear time history analysis using step-by-step integration is capable of tracing the dynamic response of a structure during the entire vibration period and is able to accommodate the pulsing wave form. However, the accuracy of the numerical results is very sensitive to the modeling of the nonlinear load-deformation relationship of the structural member. FEMA 273 and ATC-40 provide the modeling parameters for structural nonlinear analyses of RC beams and RC columns. They use three parameters to define the plastic rotation angles and a residual strength ratio to describe the nonlinear load- deformation relationship of an RC member. Structural nonlinear analyses are performed based on these parameters. This method provides a convenient way to obtain the nonlinear seismic responses of RC structures. However, the accuracy of the numerical solutions might be further improved. For this purpose, results from a previous study on modeling of the static pushover analyses for RC bridge columns (Sung et al. 2005) is adopted for the nonlinear time history analysis presented herein to evaluate the structural responses excited by a near-fault ground motion. To ensure the reliability of this approach, the numerical results were compared to experimental results. The results confirm that the proposed approach is valid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号