首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   10篇
测绘学   11篇
大气科学   16篇
地球物理   43篇
地质学   83篇
海洋学   18篇
天文学   12篇
自然地理   29篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   9篇
  2014年   12篇
  2013年   9篇
  2012年   4篇
  2011年   15篇
  2010年   11篇
  2009年   15篇
  2008年   14篇
  2007年   18篇
  2006年   15篇
  2005年   10篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
141.
This note presents the first results of the development of 3D high-resolution marine seismic method designed for scientific application. A particular attention was paid to the realisation of an operational system to be in agreement with the expected goals in term of acquisition and processing. To cite this article: Y. Thomas et al., C. R. Geoscience 336 (2004).  相似文献   
142.
Numerous observations indicate that faults play a major role on the migration pathways of fluids in the Bolivian sub-Andean Zone. Most oil seeps in the foothills are located on faults, but oil fields in the foredeep are closed by faults. In the foothills, analysis of cements in fractures inside and around fault zones indicates that the faults act as barriers for transversal migration but can be preferential lateral migration pathways for both hydrocarbons and water. A detailed study of these apparent contradictions suggests that the hydraulic behaviour of faults changes with depth in relation with sandstone diagenesis, but it is strain-independent. From microstructural analyses of fault zones, we suggest that the main controlling factor is temperature, which facilitates or inhibits quartz precipitation. This result implies that the same fault is a barrier for lateral and transversal migration at depths >3 km, due to sealing of fractures by authigenic quartz at T>80 °C, and is a lateral drain in its shallower parts. As a result, the various thrust sheets are isolated from a hydraulic point of view, whereas migration in the foreland may take place over long distances (>100 km).  相似文献   
143.
A quantitative analysis of the various parameters influencing the thermal regime in orogenic belts and related foredeeps shows that (i) the increasing heat flow in internal zones is mainly due to the thickening of radiogenic layers, although there is no simple proportionality between crustal thickness and heat flow signal at large scale; (ii) in external zones, where the horizontal strain rate is large (such as in the Bolivian Andes), surface processes can be of first order within the first kilometers of the crust. Hence, they induce a large scatter in the thermal data which are acquired at shallow depths. The deep thermal regime can be restored only by a quantitative assessment of these parameters. Active erosion (respectively sedimentation) can increase (resp. reduce) the heat flow by a factor of 2 in the uppermost kilometers. The effects of fluid circulation percolating at depth can also generate significant local disturbances. Other processes such as heat advection during thrusting, surface morphology and climate change have a minor influence in most settings, compared to the aforesaid effects.In the Bolivian Sub Andean Zone, between 18°S and 22°S, the very active deformation enhances the surface thermal perturbations (particularly erosion and sedimentation) and disturb the thermal field. The analysis of these data accounting for the kinematics of the belt allows the lateral variations of the thermal regime at various scales to be assessed. A slight eastward increase in the thermal regime towards the Chaco plain is evidenced as well as towards the Boomerang area, as the Mesozoic and Cenozoic sedimentary cover gets thinner.  相似文献   
144.
The aim of seismic reservoir monitoring is to map the spatial and temporal distributions and contact interfaces of various hydrocarbon fluids and water within a reservoir rock. During the production of hydrocarbons, the fluids produced are generally displaced by an injection fluid. We discuss possible seismic effects which may occur when the pore volume contains two or more fluids. In particular, we investigate the effect of immiscible pore fluids, i.e. when the pore fluids occupy different parts of the pore volume. The modelling of seismic velocities is performed using a differential effective‐medium theory in which the various pore fluids are allowed to occupy the pore space in different ways. The P‐wave velocity is seen to depend strongly on the bulk modulus of the pore fluids in the most compliant (low aspect ratio) pores. Various scenarios of the microscopic fluid distribution across a gas–oil contact (GOC) zone have been designed, and the corresponding seismic properties modelled. Such GOC transition zones generally give diffuse reflection regions instead of the typical distinct GOC interface. Hence, such transition zones generally should be modelled by finite‐difference or finite‐element techniques. We have combined rock physics modelling and seismic modelling to simulate the seismic responses of some gas–oil zones, applying various fluid‐distribution models. The seismic responses may vary both in the reflection time, amplitude and phase characteristics. Our results indicate that when performing a reservoir monitoring experiment, erroneous conclusions about a GOC movement may be drawn if the microscopic fluid‐distribution effects are neglected.  相似文献   
145.
Global time series of low resolution images are available with high repeat frequency and at low cost, but their analysis is hampered by the presence of mixed pixels and the difficulty in locating detailed spatial features. This study examined the potential of sub-pixel classification for regional crop area estimation using time series of monthly NDVI-composites of the 1 km resolution sensor SPOT-VEGETATION. Belgium was selected as test zone, because of the availability of ample reference data in the form of a vectorial GIS with the boundaries and cover type of the large majority of agricultural fields. Two different methods were investigated: the linear mixture model and neural networks. Both result in area fraction images (AFIs), which contain for each 1 km pixel the estimated area proportions occupied by the different cover types (crops or other land use). Both algorithms were trained with part of the reference data and validated with the remainder. Validation was repeated at three different levels: the 1 km pixel, the municipality and the agro-statistical district. In general, the neural network outperformed the linear mixture model. For the major classes (winter wheat, maize, forest) the obtained acreage estimates showed good agreement with the true values, especially when aggregated to the level of the municipality (R2 ≈ 85%) or district (R2 ≈ 95%). The method seems attractive for wide-scale, regional area estimation in data-poor countries.  相似文献   
146.
We propose a basin-scale (~300 × 100 km) study of the pre-salt to salt sedimentary fill from the Suez rift based on outcrop and subsurface data. This study is a new synthesis of existing and newly acquired data using an integrated approach with (1) basin-scale synthesis of the structural framework, (2) stratigraphic architecture characterization of the entire Suez rift using sequence stratigraphy concepts, (3) lithologic maps reconstruction and interpretation, (4) isopach/depocenter maps interpolation to quantify sedimentary volumes, and (5) quantification of the sediment supply, mean carbonate and evaporite accumulation rates, and their integration into the rift dynamic. The Gulf of Suez is ca. 300-km-long and up to 80-km-wide rift structure, resulting from the late Oligocene to early Miocene rifting of the African and Arabian plates. The stratigraphic architecture has recorded five main stages of rift evolution, from rift initiation to finally tectonic quiescence characterized by salt deposits. Rift initiation (ca. 1–4 Myr duration): the Suez rift was initiated at the end of the Oligocene along the NNW-SSE trend of the Red Sea with evidences of active volcanism. Continental to lacustrine deposits only occurred in isolated depocenters. Sediment supply was relatively low. Rift widening (ca. 3 Myr duration): the rift propagated from south to north (Aquitanian), with first marine incursions from the Mediterranean Sea. The rift was subdivided into numerous depocenters controlled by active faults. Sedimentation was characterized by small carbonate platforms and associated sabkha deposits to the south and shallow open marine condition to the north with mixed sedimentation organized into an overall transgressive trend. Rift climax (ca. 5 Myr duration): the rift was then flooded during Burdigalian times recording the connection between the Mediterranean Sea and the Red Sea. The faults were gradually connected and reliefs on the rift shoulders were high as evidenced by a strong increase of the uplift/subsidence rates and sediment supply. Three main depocenters were then individualized across the rift and correspond to the Darag, Central, and Southern basins. Sedimentation was characterized by very large Gilbert-type deltas along the eastern margin and associated submarine fans and turbidite systems along the basin axis. Isolated carbonate platforms and reefs mainly occurred in the Southern basin and along tilted block crests. Late syn-rift to rift narrowing (ca. 4 Myr duration): during the Langhian, the basin recorded several falls of relative sea level and bathymetry in the rift axis was progressively reduced. The former reliefs induced during the rift climax were quickly destroyed as evidenced by the drastic drop in sediment supply. Stratigraphic reconstruction indicates that the Central basin was restricted during lowstand period; meanwhile, open marine conditions prevailed to the north and south of the Suez rift. The Central basin, Zaafarana, and Morgan accommodation zones thus acted as a major divide between the Mediterranean Sea and the Red Sea. During Serravalian times, the Suez rift also recorded several disconnections between the Mediterranean and Red seas as evidenced by massive evaporites in major fault-controlled depocenters. The Suez rift was occasionally characterized by N–S paleogeographic gradient with restricted setting to the north and open marine setting to the south (Red Sea). Tectonic quiescence to latest syn-rift (ca. 7 Myr duration): the Tortonian was then characterized by the deposition of very thick salt series (>1000 m) which recorded a period of maximum restriction for the Suez rift. The basin was still subdivided into several sub-basins bounded by major faults. The basin with a N-S paleogeographic gradient was totally and permanently disconnected from the Mediterranean Sea and connected to open marine condition via the Red Sea. The Messinian was also characterized by a thick salt series, but the evaporite typology and sedimentary systems distribution suggest a more humid climate than during Tortonian times. Pre-salt to salt transition was not sharp and lasted for ca. 4 Myr (Langhian-Serravalian). It was initiated as the result of the combined effect of (1) climatic changes with aridization and low water input from the catchments and (2) rift dynamic induced by plate tectonic reorganization that controlled the interplay between sea level and accommodation zones constituting sills.  相似文献   
147.
The formation of polycyclic aromatic hydrocarbon (PAH) molecules is studied in the inner envelope of a typical carbon-rich AGB star. The deep envelope is formed of layers of gas that experience the passage of strong periodic shocks forming close to the stellar photosphere. The parcels of gas then follow quasi-ballistic trajectories which are characterized by high gas densities. A chemical scheme based on combustion chemistry is applied to shocked layers of gas, and a PAH formation yield is calculated. PAHs up to coronene (C24H12) survive shocks with strengths of 10 km s–1, and they accumulate in the gas parcel over several stellar pulsations. This result illustrates that any C-rich AGB star can nucleate dust precursors in its envelope.  相似文献   
148.
This study evaluates the potential of using chironomid assemblages to estimate past temperature changes by comparing chironomid-inferred temperatures to meteorological data for the last 87 years. This comparison is made using high-resolution (i.e., sub-decadally resolved) short cores of four lakes along a gradient of altitude (Lake Njulla, 999 m a.s.l., Lake 850, 850 m a.s.l., Lake Alanen Laanijavri, 365 m a.s.l. and Lake Vuoskkujavri, 348 m a.s.l.), vegetation (pine forest to alpine tundra vegetation) and temperature (mean July temperature of 12.4 to 8.1°C). Patterns of chironomid-inferred changes in mean July air temperature were highly comparable to changes in the meteorological data. Moreover, instrumental data were almost always within the specific errors of the quantitative estimates using chironomids. These results indicate that chironomids can be used as a powerful tool to reconstruct temperatures and that chironomids are sensitive enough to record temperature changes of low magnitude such as those recorded during the Holocene. Although this relationship between temperature and chironomid community is strong for the last 87 years, we cannot assume that other environmental factors such as organic matter, changes of lake water depth or oxygen availability were not more significant over longer temporal scales of the Holocene, or longer.  相似文献   
149.
150.
The evolution of an allochthonous salt sheet underlying the Mississippi fan is quantified using the two-dimensional LOCACE balanced section program. A first set of tests shows that the shape of the principal normal fault associated with the salt sheet is inconsistent with a roll-over geometry when using flexural slip or simple 120° linear shear criteria with a fixed footwall geometry. The next test with corrected fault geometry allows coherent restoration at the early Lower Miocene using the flexural slip criterion. In two-dimensional reconstructions, the area of salt cannot be balanced, i.e. the area available for salt is considerably wider than the actual salt area shown on the initial section. Thus either salt was dissolved or, perhaps more likely, salt moved outside the plane of section calling for a three-dimensional volumetric reconstruction procedure. The final interpretation is geometrically consistent and suggests that since early Lower Miocene time a large amount of salt moved out of the plane of section forming the allochthonous salt masses. An attempt to approximately balance salt volumes in three dimensions suggests that the amount of salt escaping the system is at least 18%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号