Secular changes in the architecture, thermal state, and metamorphic style of global orogens are thought to have occurred since the Archean; however, despite widespread research, the driving mechanisms for such changes remain unclear. The Paleoproterozoic may prove to be a key era for investigating secular changes in global orogens, as it marks the earliest stage of an eon that saw the onset of modern-style global tectonics. The 2.1 Ga granulite-facies Mistinibi-Raude Domain (MRD), located in the Southeastern Churchill Province, Canada, offers a rare exposure of Paleoproterozoic high metamorphic grade supracrustal sequences (Mistinibi Complex, MC). Rocks from this domain were subjected to petrochronological investigations to establish P–T–t–X evolutions and to provide first order thermal state, burial and exhumation rates, and metamorphic gradients for the transient Paleoproterozoic times. To obtain comprehensive insight into the P–T–t–X evolution of the MRD, we used multi-method geochronology—Lu–Hf on garnet and U–Pb on zircon and monazite—integrated with detailed petrography, trace element chemistry, and phase equilibria modelling. Despite the extensive use of zircon and monazite as geochronometers, their behaviour in anatectic conditions is complex, leading to substantial ambiguity in interpreting the timing of prograde metamorphism. Our results indicate a clockwise metamorphic path involving significant melt extraction from the metasedimentary rocks, followed by cooling from >815°C to ~770°C at ~0.8 GPa. The timing of prograde burial and cooling from supra- to subsolidus conditions is constrained through garnet, monazite, and zircon petrochronology at 2,150–2,120 Ma and at 2,070–2,080 Ma, respectively. These results highlight long-lived residence of the rocks at mid-crustal supra-solidus conditions (55–70 Ma), with preserved prograde and retrograde supra-solidus monazite and zircon. The rocks record extremely slow burial rates (0.25–0.30 km/Ma) along a high metamorphic gradient (900–1,000°C/GPa), which appears symptomatic of Paleoproterozoic orogens. The MC did not record any significant metamorphism after 2,067 Ma, despite having collided with terranes that record high-grade metamorphism during the major 1.9–1.8 Ga Trans-Hudson orogeny. The MC would therefore represent a remnant of a local early Paleoproterozoic metamorphic infrastructure, later preserved as superstructure in the large hot Trans-Hudson orogen. 相似文献
Evaporation of intercepted rain by a canopy is an important component of evapotranspiration, particularly in the humid boreal forest, which is subject to frequent precipitation and where conifers have a large surface water storage capacity. Unfortunately, our knowledge of interception processes for this type of environment is limited by the many challenges associated with experimental monitoring of the canopy water balance. The objective of this study is to observe and estimate canopy storage capacity and wet canopy evaporation at the sub-daily and seasonal time scales in a humid boreal forest. This study relies on field-based estimates of rainfall interception and evapotranspiration partitioning at the Montmorency Forest, Québec, Canada (mean annual precipitation: 1600 mm, mean annual evapotranspiration: 550 mm), in two balsam fir-white birch forest stands. Evapotranspiration was monitored using eddy covariance sensors and sap flow systems, whereas rainfall interception was measured using 12 sets of throughfall and six stemflow collectors randomly placed inside six 400-m2 plots. Changes in the amount of water stored on the canopy were also directly monitored using the stem compression method. The amount of water intercepted by the forest canopy was 11 ± 5% of the total rainfall during the snow-free (5 July–18 October) measurement periods of 2017 and 2018. The maximum canopy storage estimated from rainfall interception measurements was on average 1.6 ± 0.7 mm, though a higher value was found using the stem compression method (2.2 ± 1.6 mm). Taking the average of the two forest stands studied, evaporation of intercepted water represented 21 ± 8% of evapotranspiration, while the contribution of transpiration and understory evapotranspiration was 36 ± 9% and 18 ± 8%. The observations of each of the evapotranspiration terms underestimated the total evapotranspiration observed, so that 26 ± 12% of it was not attributed. These results highlight the importance to account for the evaporation of rain intercepted by humid boreal forests in hydrological models. 相似文献
The present paper presents the results of a technique based on Vertical Seismic Profiling (VSP) to quantify the offset of a fault in a context where seismic reflection profiles do not image any reflectors. The case study is located in Greece, in the Aigion area, on the south border of the Corinth Gulf. The Aigion fault, oriented East–West, and dipping at 60°N, has been intersected by the scientific well Aig-10 at 760 m in depth, but some uncertainty remained concerning its exact offset since the depth of the pre-rift sequence is open to debate due to the lack of subsurface data. The pre-rift consists of a Mesozoic low-porosity series (carbonates and radiolarite), while the syn-rift consists of poorly compacted conglomerates and turbidites.
Seismic diffractions on fault edges are expected to be present along the fault surface. We find that a few diffracted events are effectively recorded in P and S wave mode by the 4 components of the VSP survey, and critically refracted arrivals along the Aigion fault plane. These singular events have been used in order to refine the fault geometry and to determine its throw. Additionally, results from a 2D finite difference elastic seismic model of a single fault step geometry have been closely examined in order to illustrate the generation of the singular seismic events observed on the field data, such as P-wave and S-wave refracted and diffracted events, and support their interpretation with higher confidence. As a result, the seismic arrival patterns from full waveform seismic modelling confirm the characterisation of the main fault geometry (mainly its throw: about 200 m) in the well vicinity derived from the actual analysis of the 4 Component Aigion VSP data. 相似文献
Raw wastewaters were massively spread on sandy luvisols near Paris from 1899 to 2002, leading to high trace metals (TM) pollution of soils. Mass balance calculations were performed on a soil profile to assess vertical migration of TM. The contamination was estimated by subtracting the natural pedo-geochemical background of the horizons. TM inputs were estimated using Cr as an invariant. It is shown that Pb and Cr remained in the surface horizon, while Ni, Cd, Cu and Zn migrated downward, being more or less trapped depending on the physicochemical properties of the horizons. To cite this article: C. Dère et al., C. R. Geoscience 338 (2006).相似文献
Dust formation processes are investigated in the hot hydrogen-deficient wind of carbon-rich Wolf-Rayet (WC) stars. Results
show that dust precursors (small linear carbon chains) form in large quantities only at high gas densities. This suggests
that a clumpy wind or an equatorial disc are necessary to trigger dust formation in WC stars.
This revised version was published online in September 2006 with corrections to the Cover Date. 相似文献