首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   13篇
  国内免费   6篇
测绘学   4篇
大气科学   14篇
地球物理   52篇
地质学   81篇
海洋学   6篇
天文学   22篇
综合类   7篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   5篇
  2021年   12篇
  2020年   5篇
  2019年   7篇
  2018年   18篇
  2017年   13篇
  2016年   20篇
  2015年   11篇
  2014年   15篇
  2013年   23篇
  2012年   10篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2005年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   4篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
151.
In this work, investigation on the development of local scour around an oblong pier in a 180 degree flume bend is presented. Scour hole can cause failure of the bridge especially during the river floods. In this study, the use of oblong collars for reducing the effects of local scour at a bridge pier is presented together with the time aspect of the scour development. Tests were conducted using one oblong pier in positions of 60degree under one flow conditions. The study was conducted using a physical hydraulic model operated under clear-water conditions in cohesionless bed material. In this study, the time development of the local scour around the oblong pier fitted with and without collar plates was studied. Investigated was the effect of size and elevation collar on the time development of scour and its efficacy at preventing scour at a bridge pier. The time development of the scour hole around the model pier with and without a collar installed was compared with similar studies on bridge piers. The results of the model study indicated that the maximum depth of scour is highly dependent on the experimental duration. It was observed that, as the minimum depth of scour occurs for the square collar at width of 3B placed at elevation of 0.1B below the bed and the size of a collar plate increases, the scour decreases. Measuring depth of scouring based on experimental observation, an empirical relation is developed with regression coefficient 95%.  相似文献   
152.
We evaluated the potential impacts of future land cover change and climate variability on hydrological processes in the Neka River basin, northern Iran. This catchment is the main source of water for the intensively cultivated area of Neka County. Hydrological simulations were conducted using the Soil and Water Assessment Tool. An ensemble of 17 CMIP5 climate models was applied to assess changes in temperature and precipitation under the moderate and high emissions scenarios. To generate the business-as-usual scenario map for year 2050 we used the Land Change Modeler. With a combined change in land cover and climate, discharge is expected to decline in all seasons except the end of autumn and winter, based on the inter-model average and various climate models, which illustrated a high degree of uncertainty in discharge projections. Land cover change had a minor influence on discharge relative to that resulting from climate change.  相似文献   
153.
Acta Geotechnica - During the construction of pavements, gravelly soil is used as the main material in the base and sub-base layers. Predicting the deformation behaviour of gravelly soil has been...  相似文献   
154.
Geoelectric and hydrochemical approaches are employed to delineate the ground-water potential zones in District Okara, a part of Bari Doab, Punjab, Pakistan. Sixty-seven VES surveys are conducted with the Electrical Resistivity Meter. The resultant resistivity verses depth model for each site is estimated using computer-based software IX1D. Aquifer thickness maps and interpreted resistivity maps were generated from interpreted VES results. Dar-Zarrouk parameters, transverse resistance (TR), longitudinal conductance (SL) and anisotropy (λ) were also calculated from resistivity data to delineate the potential zones of aquifer. 70% of SL value is ≤3S, 30% of SL value is > 3S. According to SL and TR values, the whole area is divided into three potential zones, high, medium and low potential zones. The spatial distribution maps show that north, south and central parts of study area are marked as good potential aquifer zones. Longitudinal conductance values are further utilized to determine aquifer protective capacity of area. The whole area is characterized by moderate to good and up to some extent very good aquifer protective area on the basis of SL values. The groundwater samples from sixty-seven installed tube wells are collected for hydro-chemical analysis. The electrical conductivity values are determined. Correlation is then developed between the EC (μS/cm) of groundwater samples vs. interpreted aquifer resistivity showing R2 value 0.90.  相似文献   
155.
Nine positions of comet Hale-Bopp (1995 O1), derived from the X-Y positions on Bosscha Schmidt plates, taken between August 15 to August 22, 1995, are given.  相似文献   
156.
Forest land affected by deforestation yields high soil and water losses.Suitable management practices need to be found that can reduce these losses and achieve ecological and hydrological sustainability of the deforested areas.Mulch has been found to be effective in reducing soil losses;straw mulch is easy to apply,contributes soil organic matter,and is efficient since the day of application.However,the complex effects of rice straw mulch with different application rates and lengths on surface runoff and soil loss have not been clarified in depth.The current paper evaluates the efficiency of rice straw mulch in reducing the hydrological response of a silty clay loam soil under high intensity and low frequency rainfall events(tap water with total depth of 49 mm and intensity of 98 mm/h)simulated in the laboratory.Surface runoff and soil loss at three lengths of the straw(10,30,and 200 mm)and three application rates(1,2,and 3 Mg/ha)were measured in 50 cm(width)×100 cm(length)×10 cm(depth)plots with disturbed soil samples(aggregate soil size<4 mm)collected in a deforested area.Bare soil was used as control experiment.Runoff volume and erosion were significantly(at p<0.05)lower in mulched soils compared to control plots.These reductions were ascribed to the water absorption capacity of the rice straw and the protection cover of the mulch layer.The minimum runoff was observed for a mulch layer of3 Mg/ha of straw with a length of 200 mm.The lowest soil losses were found with straw length of10 mm.The models developed predict runoff and erosion based on simple linear functions of mulch application rate and length,and can be used for a suitable hydrological management of soil.It is concluded that,thanks to rice straw mulch used as an organic soil conditioner,soil erosion and surface runoff are significantly(at p<0.05)reduced,and the mulch protection contributes to reduce the risk of soil degradation.Further research is,however,needed to analyze the upscaling of the hydrological effects of mulching from the plot to the hillslope scale.  相似文献   
157.
The rainfall–runoff modelling being a stochastic process in nature is dependent on various climatological variables and catchment characteristics and therefore numerous hydrological models have been developed to simulate this complex process. One approach to modelling this complex non-linear rainfall–runoff process is to combine the outputs of various models to get more accurate and reliable results. This multi-model combination approach relies on the fact that various models capture different features of the data, and hence combination of these features would yield better result. This study for the first time presented a novel wavelet based combination approach for estimating combined runoff The simulated daily output (Runoff) of five selected conventional rainfall–runoff models from seven different catchments located in different parts of the world was used in current study for estimating combined runoff for each time period. Five selected rainfall–runoff models used in this study included four data driven models, namely, the simple linear model, the linear perturbation model, the linearly varying variable gain factor model, the constrained linear systems with a single threshold and one conceptual model, namely, the soil moisture accounting and routing model. The multilayer perceptron neural network method was used to develop combined wavelet coupled models to evaluate the effect of wavelet transformation (WT). The performance of the developed wavelet coupled combination models was compared with their counterpart simple combination models developed without WT. It was concluded that the presented wavelet coupled combination approach outperformed the existing approaches of combining different models without applying input WT. The study also recommended that different models in a combination approach should be selected on the basis of their individual performance.  相似文献   
158.
The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event.  相似文献   
159.
Drainage responds rapidly to tectonic changes and thus it is a potential parameter for teetonogeomorphological analysis. Drainage network of Potwar is a good geological record of movement, displacements, regional uplifts and erosion of the tectonic units. This study focuses on utilizing drainage network extracted from Shuttle Radar Digital Elevation Data (SRTM-DEM) in order to constrain the structure of the Potwar Plateau. SWAN syncline divides Potwar into northern Potwar deformed zone (NPDZ) and southern Potwar platform zone (SPPZ). We extracted the drainage network from DEM and analyzed 112 streams using stream power law. Spatial distribution of concavity and steepness indices were used to prepare uplift rate map for the area. DEM was further utilized to extract lineaments to study the mutual relationship between lineaments and drainage patterns. We compared the local correlation between the extracted lineaments and drainage network of the area that gives us quantitative information and shows promising prospects. The streams in the NPDZ indicate high steepness values as compared to the streams in the SPPZ. The spatial distribution of geomorphic parameters distinctive deformation and uplift rates suggest the among eastern, central and western parts. The local correlation between drainage network and lineaments from DEM is strongly positive in the area within I km of radius.  相似文献   
160.
Geotechnical and Geological Engineering - Soil–reinforcement interaction is a major factor in the analysis and design of reinforced earth structures. In current research the effects of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号