首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   7篇
  国内免费   4篇
测绘学   1篇
大气科学   1篇
地球物理   24篇
地质学   54篇
海洋学   7篇
天文学   5篇
综合类   1篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2005年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1986年   2篇
  1982年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有93条查询结果,搜索用时 890 毫秒
61.
62.
Inverse Problem in Ground Water: Model Development   总被引:1,自引:0,他引:1  
  相似文献   
63.
Climate anomalies can cause natural disasters such as severe fires and floods on peatlands in South Sumatra. Factors that affect the natural disasters on peatlands include rainfall, groundwater level, and soil moisture. This paper aims to study the effect of the climate anomalies in 2019 and 2020 and effects of these influencing factors on peatlands in South Sumatra. The data used in this study was derived from in-situ measurement at two SESAME’s measurement stations in the study area. The results indicate that in the 2019 dry season, the rainfall was minimal, the lowest groundwater table depth was ?1.14 m and the lowest soil moisture was 3.4%. In the 2020 dry season, rainfall was above the monthly average of 100 mm, the lowest groundwater level was ?0.44 m, and the lowest soil moisture was 26.64%. There is also a strong correlation between soil moisture and groundwater table depth. The correlation between the two is stronger when there is less rainfall.  相似文献   
64.
The reservoir character of the Cretaceous sand is evaluated in Lower Indus Basin, Pakistan where water flooding is very common. Thus, prediction of subsurface structure, lithology and reservoir characterization is fundamental for a successful oil or gas discovery. Seismic reflective response is an important tool to detect sub-surface structure. Seismic reflection response is not enough to highlight geological boundaries and fluids in the pore space therefore, the use of integrated approach is vital to map sub-surface heterogeneities with high level of confidence. Based on seismic character and continuity of prominent reflectors four seismic horizons are marked on the seismic sections. All the strata is highly disturbed and distorted with presence of a network of fault bounded horst and graben structures, which indicate that the area was under compressional tectonic regime. These fault bounded geological structure formed structural traps favorable for the accumulation of hydrocarbon. The petrophysical analysis reveals that the Cretaceous sand formation has four types of sand: Sand A, B, C and D with good porosity (15 % average) and low volume of shale. Although complete petroleum system is present with structural traps and reservoir character of sand interval is very good but these sands are highly saturated with water thus are water flooded, which is the main reason of the abundant wells in the study area.  相似文献   
65.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   
66.
Assessment of the seismic vulnerability of the building stock in the earthquake-prone Marmara region of Turkey is of growing importance since such information is needed for reliable estimation of the losses that possible future earthquakes are likely to induce. The outcome of such loss assessment exercises can be used in planning of urban/regional-scale earthquake protection strategies; this is a priority in Turkey, particularly following the destructive earthquakes of 1999. Considering the size of the building inventory, Istanbul and its surrounding area is a case for which it is not easy to determine the structural properties and characteristics of the building stock. In this paper, geometrical, functional and material properties of the building stock in the northern Marmara Region, particularly around Istanbul, have been investigated and evaluated for use in loss estimation models and other types of statistic- or probability-based studies. In order to do that, the existing reinforced concrete (RC) stock has been classified as ‘compliant’ or ‘non-compliant’ buildings, dual (frame-wall) or frame structures and emergent or embedded-beam systems. In addition to the statistical parameters such as mean values, standard deviations, etc., probability density functions and their goodness-of-fit have also been investigated for all types of parameters. Functionalities such as purpose of use and floor area properties have been defined. Concrete properties of existing and recently constructed buildings and also characteristics of 220 and 420 MPa types of steel have been documented. Finally, the financial effects of retrofitting operations and damage repair have been investigated.  相似文献   
67.
Geospatial techniques play a crucial role in geomorphic studies, particularly in the challenging terrains like mountainous regions, inaccessible areas and densely vegetated landscapes, where geomorphic features cannot be recorded easily. Tectono-geomorphologic observations provide important clues regarding the landscape evolution, morpho-dynamics and ongoing tectonism of the region. The present study has been carried out in the Zanskar Basin (ZB), located to the south of the Indus Tsangpo Suture Zone (ITSZ), in the hinterland of the NW Himalaya. This study has been carried out to assess and evaluate active tectonics by employing tectono-geomorphic analysis, dynamics in drainage networks, geomorphological field observations and the Geographic Information System (GIS) environment. High-resolution satellite images, topographic maps and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) were used to generate primary data sets, which were corroborated with field investigations for valid inferences. The geometry of the ZB suggests that continuous tectonic activity exerts first-order control on the overall shape, size and structure of the ZB. This first-order response is clearly reflected in the landforms modified by tectonic processes, namely, linear mountain fronts, elongated shape and tilting of the basin, braided and meandering river courses and lower stream length gradient index values in hard rock terrain. The ZB exhibits several eye-catching geomorphic features, such as well-defined triangular facets with wide base lengths and wine-glass valleys with small outlets along the footwall block of the Zanskar Shear Zone/South Tibetan Detachment System (ZSZ/STDS), as well as the presence of wind gaps, water gaps, bedrock incision, incised and entrenched valleys, narrow gorges and a high incision rate inferring active tectonics and recent uplift in the region. In addition, the existence of uplifted river terraces, as well as the stepped morphology of fans and strath terraces, suggests that the region is experiencing recent activity and ongoing tectonic uplift. These modified geomorphic characteristics suggest that the hinterland, which is part of the NW Himalaya, is tectonically quite active and has experienced a differential rate of tectonics during its evolution. The quantified geomorphic indices and their relations with the tectonics, climate and erosion activity infer that the basin geometry is mostly controlled by the ZSZ/STDS that dips 20°–70° NE, the south-dipping Zanskar Counter Thrust (ZCT) and other local tectonic elements like the Choksti Thrust (CT), Stondgey Thrust, Zangla Thrust and tectonic structures. The synergised results of quantified geomorphic indices and tectono-geomorphic evidence in the ZB strongly indicate that both the past and ongoing tectonism have significantly shaped and modified geomorphology of the ZB.  相似文献   
68.
Collapses of school or dormitory buildings experienced in recent earthquakes raise the issue of safety as a major challenge for decision makers. A school building is ‘just another structure’ technically speaking, however, the consequences of a collapse in an earthquake could lead to social reactions in the complex aftermath of a seismic tremor more than any other type of structure may possibly cause. In this paper a school building that collapsed during 2011 Tabanli, Van Earthquake in eastern Turkey, is analysed in order to identify the possible reasons that led to collapse. Apart from the inherent deficiencies of RC buildings built in Turkey in the 80's and 90's, its structural design exhibits a strikingly high asymmetry. In the analyses conducted, much attention has been given to the direction of the earthquake load and its coincidence with the bi-axial structural response parameters. The failure of the structure to comply with the 1975 Code, in vigor at the time of construction, has also been evaluated with respect to the structure’s collapse. Among the parameters that controlled the collapse, the high plan asymmetry and the coincidence of the vulnerable directions with the dominant shaking direction were critical, as well as the underestimation of the seismic hazard and the lateral design force level, specified by the then Turkish Earthquake Code.  相似文献   
69.
Precast concrete structures are preferred for facilities with large open areas due to easiness in construction. Such structures are typically composed of individual columns and long‐span beams, and are quite flexible and of limited redundancy. In this paper, nonlinear dynamic analyses of a typical such structure are conducted using as excitation 54 ground motions recorded on top of a variety of soils (hard, soft, and liquefied soil sites). The results show that liquefaction‐affected level‐ground motions systematically impose a greater threat to precast‐concrete structures in terms of seismic demand, even when low values of elastic spectral acceleration prevail, as opposed to soft‐soil records and even more to hard‐soil ones. Thus, elastic spectral acceleration appears to be an insufficient engineering demand parameter for design. Soil effects, the “signature” of which is born on ground motions, are first uncovered using wavelet analysis to detect the evolution of the energy and frequency content of the ground motion in the time domain. From this, the changes in effective (“dominant”) excitation period are noted, persuasively attributed to the nature of the soil, and finally correlated with the observed structural behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
70.
In this study, Land Surface Temperature(LST) and its lapse rate over the mountainous Kashmir Himalaya was estimated using MODIS data and correlated with the observed in-situ air temperature(Tair) data. Comparison between the MODIS LST and Tair showed a close agreement with the maximum error of the estimate ±1°C and the correlation coefficient 0.90. Analysis of the LST data from 2002-2012 showed an increasing trend at all the selected locations except at a site located in the southeastern part of Kashmir valley. Using the GTOPO30 DEM, MODIS LST data was used to estimate the actual temperature lapse rate(ATLR) along various transects across Kashmir Himalaya, which showed significant variations in space and time ranging from 0.3°C to 1.2°C per 100 m altitude change. This observation is at variance with the standard temperature lapse rate(STLR) of 0.65°C used universally in most of the hydrological and other land surface models. Snowmelt Runoff Model(SRM) was used to determine the efficacy of using the ATLR for simulating the stream flows in one of the glaciated and snow-covered watersheds in Kashmir. The use of ATLR in the SRM model improved the R2 between the observed and predicted streamflows from 0.92 to 0.97.It is hoped that the operational use of satellite-derived LST and ATLR shall improve the understanding and quantification of various processes related to climate, hydrology and ecosystem in the mountainous and data-scarce Himalaya where the use of temperature and ATLR are critical parameters for understanding various land surface and climate processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号