首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   9篇
测绘学   2篇
大气科学   17篇
地球物理   23篇
地质学   40篇
海洋学   24篇
天文学   39篇
综合类   1篇
自然地理   23篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   13篇
  2015年   6篇
  2014年   13篇
  2013年   7篇
  2012年   7篇
  2011年   10篇
  2010年   5篇
  2009年   12篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1980年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
  1955年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
61.
Abstract– Cross sections were measured for the nuclear reactions natMg(3He,x)26Al, 27Al(3He,x)26Al, natCa(3He,x)41Ca, and natCa(3He,x)36Cl in the energy region from approximately 5–35 MeV. The rates of these reactions are important for studies of early solar system irradiation scenarios. The 26Al, 36Cl, and 41Ca were separated chemically, and the numbers of atoms produced in each reaction channel were measured using accelerator mass spectrometry (AMS). From these results, 26 cross sections were determined and compared with predictions of the TALYS code. Agreement is within 40% for most cross sections. Our measurements were used to model the production of 7Be, 10Be, 26Al, and 41Ca in the early solar system. For projectiles 1H, 3He, and 4He, we assumed energy spectra of the general form E. For a wide range of parameterizations, the modeled ratios of 7Be/Be and 10Be/Be on the one hand and of 26Al/27Al and 41Ca/Ca on the other are coupled because the excitation functions for the relevant nuclear reactions have similar shapes. Modeling of a closed system with the constraint that 10Be/9Be = 0.001 fails to reproduce simultaneously the range of 7Be/9Be, 26Al/27Al, and 41Ca/Ca ratios inferred for the early solar system from studies of meteorites.  相似文献   
62.
Current predictions as to the impacts of climate change in general and Arctic climate change in particular are such that a wide range of processes relevant to Arctic contaminants are potentially vulnerable. Of these, radioactive contaminants and the processes that govern their transport and fate may be particularly susceptible to the effects of a changing Arctic climate. This paper explores the potential changes in the physical system of the Arctic climate system as they are deducible from present day knowledge and model projections. As a contribution to a better preparedness regarding Arctic marine contamination with radioactivity we present and discuss how a changing marine physical environment may play a role in altering the current understanding pertaining to behavior of contaminant radionuclides in the marine environment of the Arctic region.  相似文献   
63.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   
64.
Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m?2, consistent with models’ deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the warm SST bias via vertical heat advection. Third, SETA SST biases in CMIP5 models are correlated with surface and subsurface ocean temperature biases in the equatorial region, suggesting that the equatorial temperature bias remotely contributes to the SETA SST bias. Finally, we found that all CMIP5 models simulate a southward displaced Angola–Benguela front (ABF), which in many models is more than 10° south of its observed location. Furthermore, SETA SST biases are most significantly correlated with ABF latitude, which suggests that the inability of CMIP5 models to accurately simulate the ABF is a leading cause of the SETA SST bias. This is supported by simulations with the oceanic component of one of the CMIP5 models, which is forced with observationally derived surface fluxes. The results show that even with the observationally derived surface atmospheric forcing, the ocean model generates a significant warm SST bias near the ABF, underlining the important role of ocean dynamics in SETA SST bias problem. Further model simulations were conducted to address the impact of the SETA SST biases. The results indicate a significant remote influence of the SETA SST bias on global model simulations of tropical climate, underscoring the importance and urgency to reduce the SETA SST bias in global climate models.  相似文献   
65.
66.
There are both internal and external controlling factors leading to slope instability and susceptibility to mass movement processes. This paper explores which external climatic variables of different temporal scales influence the occurrence of high-magnitude landslide events. The investigations were focused on the Wellenkalk-cuesta scarp in the Thuringia Basin (Thüringer Becken) in central Germany. The cuesta scarp is composed of a densely jointed limestone caprock (Wellenkalk), and impermeable mudstones and marls of the Upper Bunter Sandstone (Röt) in the lower part of the slope. Mass movements are a typical feature of the Wellenkalk-scarp. The entire scarp slope length (1000 km) has been systematically mapped and investigated in a comprehensive research project in order to provide reliable information on the spatial distribution and control of the mass movements. More than 20% of the scarp slope has been influenced by various types of Holocene mass movements with strong differences in spatial frequencies. Sixteen high-magnitude landslides (Sturzfließungen) were identified by field inspection and mapping of slope geomorphology. Information on locations, morphometric characteristics, stratigraphic positions and rainfall-related attributes of the scarp slopes affected by the large landslides is presented.Mean annual rainfall amounts decrease from more than 800 mm in the western part of the basin to less than 550 mm in the east. Meteorological statistics on the spatial distribution of heavy rainfall intensities of different durations and return periods show that greatest precipitation intensities in short events (1 h) are reached at the western margin. Differences in rainfall intensities between the western and eastern parts decrease with increasing duration of the events. Where available, event-related meteorological information was collected. The spatial distribution of the landslides is most closely mirrored in the pattern of mean annual precipitation, though this variable is generally not thought to be a satisfactory or reliable climatic controlling factor. No landslides occur below a threshold value of 700 mm. The empirical data show that some general level of average perennial water input into the slope system seems to be of decisive importance for the occurrence of high-magnitude mass movements. Only when the precondition of a more general hydrological disposition is fulfilled, a direct triggering of high-magnitude mass movements by a short-time intensive rainfall period or event can become effective.  相似文献   
67.
68.
Isotope dilution calibration has been applied to the determination of Zr and Hf in whole rocks by laser ablation (LA)-ICP-MS. Enriched isotopes were added during the preparation of flux-free, synthetic whole rock glasses and homogenised through a combination of grinding and fusion. This method avoids problems, such as solution instability and the chemical resistance of minerals such as zircon, inherent in acid digestion sample preparation. The use of isotope dilution removes the need for external calibration using certified reference material glasses such as NIST SRM 612 for which certified Zr and Hf values are not available. The precision of Zr and Hf determinations were found to be < 1% and 3.5% respectively, limited by Poisson counting statistics which contributed to 50% of the final precision of analysis. Measured values correlate closely with compiled literature values.  相似文献   
69.
In this study, a technique for high precision in situ Fe and Mg isotope determinations by femtosecond‐laser ablation‐multi collector‐ICP‐MS (fs‐LA‐MC‐ICP‐MS) was developed. This technique was employed to determine reference values for a series of common reference glasses that may be used for external standardisation of in situ Fe and Mg isotope determinations in silicates. The analysed glasses are part of the MPI‐DING and United States Geological Survey (USGS) reference glass series, consisting of basaltic (BIR‐1G, BCR‐2G, BHVO‐2G, KL2‐G, ML3B‐G) and komatiitic (GOR128‐G and GOR132‐G) compositions. Their Fe and Mg isotope compositions were determined by in situ fs‐LA‐MC‐ICP‐MS and by conventional solution nebulisation multi‐collector ICP‐MS. We determined δ56Fe values for these glasses ranging between ‐0.04‰ and 0.10‰ (relative to IRMM‐014) and δ26Mg values ranging between ‐0.40‰ and ‐0.15‰ (relative to DSM‐3). Our fs‐LA‐MC‐ICP‐MS results for both Fe and Mg isotope compositions agreed with solution nebulisation analyses within analytical uncertainties. Furthermore, the results of three USGS reference glasses (BIR‐1G, BHVO‐2G and BCR‐2G) agreed with previous results for powdered and dissolved aliquots of the same reference materials. Measurement reproducibilities of the in situ determinations of δ56Fe and δ26Mg values were usually better than 0.12‰ and 0.13‰ (2s), respectively. We further demonstrate that our technique is a suitable tool to resolve isotopic zoning in chemically‐zoned olivine crystals. It may be used for a variety of different applications on isotopically‐zoned minerals, e.g., in magmatic or metamorphic rocks or meteorites, to unravel their formation or cooling rates.  相似文献   
70.
Two seismic refraction and gravity lines were obtained along and normal to the axis of the Aegir Rift, an extinct spreading centre in the Norway Basin. Velocity-depth solutions and crustal structure models are derived from ocean-bottom records using two-dimensional ray tracing and synthetic seismogram modelling techniques. Gravity data are used to generate models consistent with the lateral variations in thickness of the layers in the crustal models. The resulting models require considerable degree of lateral inhomogeneity along and perpendicular to the rift axis. Crust within the extinct spreading centre is found to be thinner and of low P-wave velocity when compared with the crust sampled off-axis. To explain reduced velocities of the lower crust we suggest that, due to the relationship between fracturing and seismic velocity, the decreasing spreading rate leading up to extinction let the mechanically strong layer thicken, so that faulting and fracturing extended to greater depths . Low velocities are also observed in the uppermost mantle underlying the extinct spreading ridge. This zone is attributed to hydrothermal alteration of upper mantle peridotites. Furthermore, after spreading ceased 32-26 my ago, ongoing passive hydrothermal circulation was accompanied by the precipitation of alteration products in open void spaces, thereby decreasing the porosity and increasing the velocity. Consequently the typical low velocities of layer 2 found at active mid-ocean ridges have been replaced by values typical of mature oceanic crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号