首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   5篇
  国内免费   1篇
地球物理   28篇
地质学   56篇
海洋学   2篇
天文学   7篇
自然地理   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   8篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1989年   1篇
  1979年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
61.
Ilya Yu Alekseev 《Solar physics》2004,224(1-2):187-194
We present the first results of searching for stellar cycles by analysis of stellar spottedness using an algorithm developed at the Crimean Astrophysical Observatory. For more than 35 red spotted stars, we find ten targets which demonstrate cyclic variations of average latitudes and total areas of starspots. Activity cycles detected by this method have a typical cycle length about 4–15 years which are analogous to the 11-year solar Schwabe cycle. Most of the program stars demonstrate a rough analogue with the solar butterfly diagram. They show a tendency for the average starspot latitude lowering when the total spot area grows. At the same time these stars show variations of stellar photometric period (which is traced by starspots) with the starspot latitudinal drift analogously to the solar differential rotation effect. We suspect that the starspot latitudinal drift rate and the differential rotation gradient depend on the stellar spectral type.  相似文献   
62.
Ionization of the earth’s atmosphere by solar and galactic cosmic rays   总被引:1,自引:0,他引:1  
A brief review of the research of atmospheric effects of cosmic rays is presented. Numerical models are discussed, that are capable to compute the cosmic ray induced ionization at a given location and time. Intercomparison of the models, as well as comparison with fragmentary direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and the whole range of the solar activity level variations. The effect of sporadic solar energetic particle events is shown to be limited on the global scale, even for the most severe event, but can be very strong locally in polar regions, affecting the physical-chemical properties of the upper atmosphere, especially at high altitudes. Thus, a new methodology is presented to study cosmic ray induced ionization of the atmosphere in full detail using realistic numerical models calibrated to direct observations.  相似文献   
63.
64.
Torsti  Jarmo  Kocharov  Leon  Laivola  Jarno  Chertok  Ilya  Thompson  Barbara J. 《Solar physics》2003,214(1):177-193
Energetic particle observations of the ERNE instrument on board SOHO enable measurements of 3He and 4He fluxes beyond 15 MeV nucleon–1 with good statistical resolution. We report results of a survey of the ERNE observations covering the period from 8 February 1999 to 6 December 2000. We find 10 and 5 days during which the 3He-to-4He ratio exceeds the levels of 20% and 50%, respectively. Those periods include, in particular, four 3He-rich events that are sufficiently strong for a reasonably accurate estimate of the time-intensity profiles. We analyze the history of solar and interplanetary phenomena associated with these high-energy 3He-rich events. Basic properties of such events and significant solar and interplanetary factors are formulated. The significant factors comprise, in particular, a strong, impulsive flare, typically observed about day before the 3He onset, and an interplanetary shock wave or magnetic field enhancement arriving at 1 AU about frac43 day after the 3He onset. The high-energy 3He-rich events make up a new kind of hybrid events, possessing the impulsive-type composition and the gradual-type time-profiles. We emphasize a dependence of the resultant particle event on the history of the particular solar eruption comprising coronal mass ejection (CME) and the flare associated with the CME.  相似文献   
65.
Some F-rich granitic rocks show anomalous, nonchondritic ratios of Y/Ho, extreme negative Eu anomalies, and unusual, discontinuous, segmented chondrite-normalised plots of rare earth elements (REE). The effects of F-rich fluids have been proposed as one of the explanations for the geochemical anomalies in the evolved granitic systems, as the stability of nonsilicate complexes of individual rare earths may affect the fluid-melt element partitioning. The lanthanide tetrad effect, related to different configurations of 4f-electron subshells of the lanthanide elements, is one of the factors affecting such complexing behaviour. We present the first experimental demonstration of the decoupling of Y and Ho, and the tetrad effect in the partitioning of rare earths between immiscible silicate and fluoride melts. Two types of experiments were performed: dry runs at atmospheric pressure in a high-temperature centrifuge at 1100 to 1200°C, and experiments with the addition of H2O at 700 to 800°C and 100 MPa in rapid-quench cold-seal pressure vessels. Run products were analysed by electron microprobe (major components), solution-based inductively coupled plasma mass spectrometry (ICP-MS) (REE in the centrifuged runs), and laser ablation ICP-MS (REE and Li in the products of rapid-quench runs). All the dry centrifuge runs were performed at super-liquidus, two-phase conditions. In the experiments with water-bearing mixtures, minor amounts of aqueous vapour were present in addition to the melts. We found that lanthanides and Y concentrated strongly in the fluoride liquids, with two-melt partition coefficients reaching values as high as 100-220 in water-bearing compositions. In all the experimental samples, two-melt partition coefficients of lanthanides show subtle periodicity consistent with the tetrad effect, and the partition coefficient of Y is greater than that of Ho. One of the mixtures also produced abundant fluorite (CaF2) and cryolite (Na3AlF6) crystals, which enabled us to study fluorite-melt and cryolite-melt REE partitioning. REE concentrations in fluorite are high and comparable to those in the fluoride melt. However, fluorite-melt partition coefficients appear to depend mostly on ionic radii and show neither significant tetrad anomalies, nor differences in Y and Ho partitioning. In contrast, REE concentrations in cryolite are low (∼5-10 times lower than in the silicate melt), and cryolite-melt REE partitioning shows very strong tetrad and Y-Ho anomalies. Our results imply that Y-Ho and lanthanide tetrad anomalies are likely to be caused mainly by aluminofluoride complexes, and the tetrad REE patterns in natural igneous rocks can result from fractionation of F-rich magmatic fluids.  相似文献   
66.
Liquid Immiscibility and the Evolution of Basaltic Magma   总被引:9,自引:0,他引:9  
This experimental study examines relationships between alternativeevolution paths of basaltic liquids (the so-called Bowen andFenner trends), and silicate liquid immiscibility. Syntheticanalogues of natural immiscible systems exhibited in volcanicglasses and melt inclusions were used as starting mixtures.Conventional quench experiments in 1 atm gas mixing furnacesproved unable to reproduce unmixing of ferrobasaltic melts,yielding instead either turbid, opalescent glasses, or crystallizationof tridymite and pyroxenes. In contrast, experiments involvingin situ high-temperature centrifugation at 1000g (g = 9·8m/s2) did yield macroscopic unmixing and phase separation. Centrifugationfor 3–4 h was insufficient to complete phase segregation,and resulted in sub-micron immiscible emulsions in quenchedglasses. For a model liquid composition of the Middle Zone ofthe Skaergaard intrusion at super-liquidus temperatures of 1110–1120°C,centrifugation produced a thin, silicic layer (64·5 wt%SiO2 and 7·4 wt% FeO) at the top of the main Fe-richglass (46 wt% SiO2 and 21 wt% FeO). The divergent compositionsat the top and bottom were shown in a series of static runsto crystallize very similar crystal assemblages of plagioclase,pyroxene, olivine, and Fe–Ti oxides. We infer from theseresults that unmixing of complex aluminosilicate liquids maybe seriously kinetically hampered (presumably by a nucleationbarrier), and thus conventional static experiments may not correctlyreproduce it. In the light of our centrifuge experiments, immiscibilityin the Skaergaard intrusion could have started already at thetransition from the Lower to the Middle Zone. Thus, magma unmixingmight be an important factor in the development of the Fe-enrichmenttrend documented in the cumulates of the Skaergaard LayeredSeries. KEY WORDS: liquid immiscibility; Skaergaard; layered intrusions; experimental petrology  相似文献   
67.
We present the results of a regional study of oxygen and Sr-Nd-Pb isotopes of Pleistocene to Recent arc volcanism in the Kamchatka Peninsula and the Kuriles, with emphasis on the largest caldera-forming centers. The δ18O values of phenocrysts, in combination with numerical crystallization modeling (MELTS) and experimental fractionation factors, are used to derive best estimates of primary values for δ18O(magma). Magmatic δ18O values span 3.5‰ and are correlated with whole-rock Sr-Nd-Pb isotopes and major elements. Our data show that Kamchatka is a region of isotopic diversity with high-δ18O basaltic magmas (sampling mantle to lower crustal high-δ18O sources), and low-δ18O silicic volcanism (sampling low-δ18O upper crust). Among one hundred Holocene and Late Pleistocene eruptive units from 23 volcanic centers, one half represents low-δ18O magmas (+4 to 5‰). Most low-δ18O magmas are voluminous silicic ignimbrites related to large >10 km3 caldera-forming eruptions and subsequent intracaldera lavas and domes: Holocene multi-caldera Ksudach volcano, Karymsky and Kurile Lake-Iliinsky calderas, and Late Pleistocene Maly Semyachik, Akademy Nauk, and Uzon calderas. Low-δ18O magmas are not found among the less voluminous products of stratovolcano eruptions and these volcanoes do not show drastic changes in δ18O during their evolution. Additionally, high-δ18O(magma) of +6.0 to 7.5‰ are found among basalts and basaltic andesites of Bezymianny, Shiveluch, Avachinsky, and Koryaksky volcanoes, and dacites and rhyolites of Opala and Khangar volcanoes (7.1-8.0‰). Phenocrysts in volcanic rocks from the adjacent Kurile Islands (ignimbrites and lavas) define normal-δ18O magmas. The widespread and volumetric abundance of low-δ18O magmas in the large landmass of Kamchatka is possibly related to a combination of near-surface volcanic processes, the effects of the last glaciation on high-latitude meteoric waters, and extensive geyser and hydrothermal systems that are matched only by Iceland. Sr and Pb isotopic compositions of normal and low-δ18O, predominantly silicic, volcanic rocks show negative correlation with δ18O, similar to the trend in Iceland. This indicates that low-δ18O volcanic rocks are largely produced by remelting of older, more radiogenic, hydrothermally altered crust that suffered δ18O-depletion during >2 My-long Pleistocene glaciation. The regionally-distributed high-δ18O values for basic volcanism (ca. + 6 to +7.5‰) in Kamchatka cannot be solely explained by high-δ18O slab fluid or melt (± sediment) addition in the mantle, or local subduction of hydrated OIB-type crust of the Hawaii-Emperor chain. Overall, Nd-Pb isotope systematics are MORB-like. Voluminous basic volcanism (in the Central Kamchatka Depression in particular) requires regional, though perhaps patchy, remobilization of thick (30-45 km) Mesozoic-Miocene arc roots, possibly resulting from interaction with hot (ca. 1300°C), wedge-derived normal-δ18O, low-87Sr/86Sr basalts and from dehydration melting of lower crustal metabasalts, variably high in δ18O and 87Sr/86Sr.  相似文献   
68.
The main objectives of this study were to investigate conditions for stable and metastable liquid immiscibility in dry borosilicate synthetic systems and to evaluate effects of temperature and bulk melt composition on two-liquid element partitioning and boron speciation. To distinguish between the stable immiscibility and quench heterogeneity, we used high-temperature centrifuge phase separation. For the case of stable liquid immiscibility, silica-rich (LS) and borate-rich (LB) conjugate liquids formed two distinct layers separated by a sharp meniscus. The liquids were quenched into glasses, which were analysed by electron microprobe. Some of the glasses were also studied by Raman spectroscopy. We used several synthetic mixtures along the danburite-anorthite (CaB2Si2O8-CaAl2Si2O8) and danburite-reedmergnerite (CaB2Si2O8-NaBSi3O8) joins. In addition, we studied four complex, six-component, Mg-bearing compositions with variable Na2O and Al2O3 contents. The experiments show that the width of the LS-LB miscibility gap decreases more rapidly with the B-Al substitution (in the danburite-anorthite join) than with the Ca-Na substitution, implying that interactions between network-forming elements have a greater effect on borate-silicate unmixing than the nature of network-modifying cations. Ca and Mg partition strongly to the depolymerised borate-rich liquid with LB-LS partition coefficients of ∼40 and higher. On the other hand, two-liquid partition coefficients of Na and Al in most cases are close to 1 and show complex variations with temperature and bulk melt composition. Raman spectra of LB glasses quenched at different temperatures suggest that the proportion of trigonal boron in bulk boron content decreases with decreasing temperature. The change in boron speciation appears to affect Al and Na two-liquid partitioning in such a way that at low temperatures, the latter element becomes more compatible with LS.  相似文献   
69.
We extend and generalize recently proposed finite volume methods using the framework of mixed finite element methods. Proposed discretizations are defined for tensor permeabilities and naturally produce a generalization of harmonic averaging, and are therefore well suited for heterogeneous and anisotropic media. They are locally mass conservative and work on extremely flexible distorted meshes. Flux variables can be excluded locally and the resulting discretizations for the pressures has the same stencils for Voronoi/PEBI grids as 2-point finite volume discretizations currently used in many simulators.  相似文献   
70.
The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for instance, for sediments near the flanks of salt domes. This work is devoted to an analysis of reflection moveout from horizontal and dipping reflectors in the symmetry plane of TI media that contains the symmetry axis. While for vertical and horizontal transverse isotropy zero-offset reflections exist for the full range of dips up to 90°, this is no longer the case for intermediate axis orientations. For typical homogeneous models with a symmetry axis tilted towards the reflector, wavefront distortions make it impossible to generate specular zero-offset reflected rays from steep interfaces. The ‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by using turning waves. These unusual phenomena may have serious implications in salt imaging. In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO) signature’). The DMO signature retains the same character as for vertical transverse isotropy only for near-vertical and near-horizontal orientation of the symmetry axis. The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away from the vertical, with a tilt of ±20° being almost sufficient to eliminate the influence of the anisotropy on the DMO signature. For larger tilt angles and typical positive values of the difference between the anisotropic parameters ε and δ, the NMO velocity increases with p more slowly than in homogeneous isotropic media; a dependence usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles requires application of anisotropic DMO algorithms. The strong influence of the tilt angle on P-wave moveout can be used to constrain the tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However, if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be performed without a 3D analysis of reflection traveltimes on lines with different azimuthal directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号