首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   5篇
  国内免费   1篇
地球物理   28篇
地质学   56篇
海洋学   2篇
天文学   7篇
自然地理   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   1篇
  2016年   8篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   7篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1989年   1篇
  1979年   1篇
排序方式: 共有94条查询结果,搜索用时 31 毫秒
31.
Transversely isotropic models with a tilted symmetry axis have become standard for imaging beneath dipping shale formations and in active tectonic areas. Here, we develop a methodology of wave-equation-based image-domain tomography for acoustic tilted transversely isotropic media. We obtain the gradients of the objective function using an integral wave-equation operator based on a separable dispersion relation that takes the symmetry-axis tilt into account. In contrast to the more conventional differential solutions, the integral operator produces only the P-wavefield without shear-wave artefacts, which facilitates both imaging and velocity analysis. The model is parameterized by the P-wave zero-dip normal-moveout velocity, the Thomsen parameter δ, anellipticity coefficient η and the symmetry-axis tilt θ. Assuming that the symmetry axis is orthogonal to reflectors, we study the influence of parameter errors on energy focusing in extended (space-lag) common-image gathers. Distortions in the anellipticity coefficient η introduce weak linear defocusing regardless of reflector dip, whereas δ influences both the energy focusing and depth scale of the migrated section. These results, which are consistent with the properties of the P-wave time-domain reflection moveout in tilted transversely isotropic media, provide important insights for implementation of velocity model-building in the image-domain. Then the algorithm is tested on a modified anticline section of the BP 2007 benchmark model.  相似文献   
32.
Experimental studies of the element distribution between carbonatite melts and hydrous fluids are hampered by the fact that neither the fluid nor the melt can be isochemically quenched in conventional high-pressure vessels. In order to overcome this problem, we used a double-capsule technique to separate immiscible fluid and melt phases during and after the runs. The inner platinum capsules were charged with carbonate mixtures (CaCO3, MgCO3 and Na2CO3) and placed inside the outer capsules charged with distilled water and diamond powder. The latter was used as an inert trap for solids precipitating from the fluid on quenching. Carbonate melt and hydrous fluid equilibrated through a small hole left in the upper end of the inner capsule. The runs were performed in rapid-quench cold-seal pressure vessels at 0.1–0.2 GPa and 700–900 °C in the two-phase (fluid + melt) stability region. Both quenched melt and quenched fluid were dissolved in dilute HCl and analysed by inductively coupled plasma atomic emission spectroscopy. The results show that under all conditions investigated, fluid/melt partition coefficients for Ca and Mg are similar and several times smaller than those for Na. At 0.1 GPa and a water/carbonatite ratio of 1 (by weight), the partition coefficients are DNa = 0.35 ± 0.02, DCa = 0.09 ± 0.02, and DMg = 0.13 ± 0.01. Between 700 and 900 °C, the effect of temperature on partitioning is negligible. However, DNa increases significantly with decreasing water/carbonatite ratio in the system. Our data show that the release of a hydrous fluid enriched in sodium and simultaneous crystallisation of calcite can transform an alkaline, vapour-saturated carbonatite melt into a body of pure calcite surrounded by zones of sodium metasomatism. Thus, it is quite possible that carbonate magmas with substantial amounts of alkalies were common parental liquids of plutonic carbonatites. Received: 6 May 1999 / Accepted: 31 August 1999  相似文献   
33.
Mathematical Geosciences - We present a topology-based method for mesh-partitioning in three-dimensional discrete fracture network (DFN) simulations that takes advantage of the intrinsic...  相似文献   
34.
35.
We report the first high-precision δ18O analyses of glass, δ18O of minerals, and trace element concentrations in glass and minerals for the 260–79 ka Central Plateau Member (CPM) rhyolites of Yellowstone, a >350 km3 cumulative volume of lavas erupted inside of 630 ka Lava Creek Tuff (LCT) caldera. The glass analyses of these crystal-poor rhyolites provide direct characterization of the melt and its evolution through time. The δ18Oglass values are low and mostly homogeneous (4.5 ± 0.14 ‰) within and in between lavas that erupted in four different temporal episodes during 200 ka of CPM volcanism with a slight shift to lower δ18O in the youngest episode (Pitchstone Plateau). These values are lower than Yellowstone basalts (5.7–6 ‰), LCT (5.5 ‰), pre-, and extracaldera rhyolites (~7–8 ‰), but higher than the earliest 550–450 ka post-LCT rhyolites (1–2 ‰). The glass δ18O value is coupled with new clinopyroxene analyses and previously reported zircon analyses to calculate oxygen isotope equilibration temperatures. Clinopyroxene records >900 °C near-liquidus temperatures, while zircon records temperatures <850 °C similar to zircon saturation temperature estimates. Trace element concentrations in the same glass analyzed for oxygen isotopes show evidence for temporal decreases in Ti, Sr, Ba, and Eu—related to Fe–Ti oxide and sanidine (±quartz) crystallization control, while other trace elements remain similar or are enriched through time. The slight temporal increase in glass Zr concentrations may reflect similar or higher temperature magmas (via zircon saturation) through time, while previosuly reported temperature decreases (e.g., Ti-in-quartz) might reflect changing Ti concentrations with progressive melt evolution. Multiple analyses of glass across single samples and in profiles across lava flow surfaces document trace element heterogeneity with compatible behavior of all analyzed elements except Rb, Nb, and U. These new data provide evidence for a three-stage geochemical evolution of these most recent Yellowstone rhyolites: (1) repeated batch melting events at the base of a homogenized low-δ18O intracaldera fill resulting in liquidus rhyolite melt and a refractory residue that sequesters feldspar-compatible elements over time. This melting may be triggered by conductive "hot plate" heating by basaltic magma intruding beneath the Yellowstone caldera resulting in contact rhyolitic melt that crystallizes early clinopyroxene and/or sanidine at high temperature. (2) Heterogeneity within individual samples and across flows reflects crystallization of these melts during preeruptive storage of magma at at lower, zircon-saturated temperatures. Compatible behavior and variations of most trace elements within individual lava flows are the result of sanidine, quartz, Fe–Ti oxide, zircon, and chevkinite crystallization at this stage. (3) Internal mixing immediately prior to and/or during eruption disrupts, these compositional gradients in each parental magma body that are preserved as melt domains distributed throughout the lava flows. These results based on the most recent and best-preserved volcanic products from the Yellowstone volcanic system provide new insight into the multiple stages required to generate highly fractionated hot spot and rift-related rhyolites. Our proposed model differs from previous interpretations that extreme Sr and Ba depletion result from long-term crystallization of a single magma body—instead we suggest that punctuated batch melting events generated a sanidine-rich refractory residue and a melt source region progressively depleted in Sr and Ba.  相似文献   
36.
U–Pb (SHRIMP) determinations on detrital zircons from the Early Paleozoic Gelnica Terrane metasandstones and their Permian overlap sediments of the Inner Western Carpathian Southern Gemeric Unit define five age populations based on age-probability plots. The metasandstones were sampled for detrital zircons from six stratigraphic levels, four of them in the Late Cambrian/Ordovician Gelnica Terrane metasandstones and the two in Permian envelope sequence. The data set includes 84 U–Pb ages for individual detrital zircons. These ages are combined with the previously dated inherited zircons from the associated metavolcanites (n?=?31). The majority of the pre-Permian detrital and inherited zircons (95%) belong to the three main populations: population A—the Paleoproterozoic/Neoarchean ages ranging from 1.75 to 2.6?Ga; population B—the Mesoproterozoic ages with the range of 0.9 to 1.1?Ga; population C—the Neoproterozoic ages, ranging from 560 to 807?Ma. The detrital zircon age spectrum from the basal Permian sediments reflects the strong recycling from the underlying Gelnica Terrane, with the presence of the dominant Precambrian C and B populations (94% of total), including the minor populations A. The range of the detrital zircon ages from the Late Permian sandstones is wider, with additional population D, ranging from 497 to 450?Ma and population E with a time span from 369 to 301?Ma. Within the Late Permian detrital zircon assemblage, the Proterozoic population A?+?B?+?C form only 25% of total. The detrital zircon data suggest that the Gelnica Terrane belongs to the peri-Gondwanan terrane with a source area located on the northwestern margin of Gondwana close to Amazonia. This terrane should have travelled a long distance in the Phanerozoic times.  相似文献   
37.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   
38.
Klyuchevskoy volcano, in Kamchatka’s subduction zone, is one of the most active arc volcanoes in the world and contains some of the highest δ18O values for olivines and basalts. We present an oxygen isotope and melt inclusion study of olivine phenocrysts in conjunction with major and trace element analyses of 14C- and tephrochronologically-dated tephra layers and lavas spanning the eruptive history of Klyuchevskoy. Whole-rock and groundmass analyses of tephra layers and lava samples demonstrate that both high-Mg (7–12.5 wt% MgO) and high-Al (17–19 wt% Al2O3, 3–6.5 wt% MgO) basalt and basaltic andesite erupted coevally from the central vent and flank cones. Individual and bulk olivine δ18O range from normal MORB values of 5.1‰ to values as high as 7.6‰. Likewise, tephra and lava matrix glass have high-δ18O values of 5.8–8.1‰. High-Al basalts dominate volumetrically in Klyuchevskoy’s volcanic record and are mostly high in δ18O. High-δ18O olivines and more normal-δ18O olivines occur in both high-Mg and high-Al samples. Most olivines in either high-Al or high-Mg basalts are not in oxygen isotopic equilibrium with their host glasses, and Δ18Oolivine–glass values are out of equilibrium by up to 1.5‰. Olivines are also out of Fe–Mg equilibrium with the host glasses, but to a lesser extent. Water concentrations in olivine-hosted melt inclusions from five tephra samples range from 0.4 to 7.1 wt%. Melt inclusion CO2 concentrations vary from below detection (<50 ppm) to 1,900 ppm. These values indicate depths of crystallization up to ~17 km (5 kbar). The variable H2O and CO2 concentrations likely reflect crystallization of olivine and entrapment of inclusions in ascending and degassing magma. Oxygen isotope and Fe–Mg disequilibria together with melt inclusion data indicate that olivine was mixed and recycled between high-Al and high-Mg basaltic melts and cumulates, and Fe–Mg and δ18O re-equilibration processes were incomplete. Major and trace elements in the variably high-δ18O olivines suggest a peridotite source for the parental magmas. Voluminous, highest in the world with respect to δ18O, and hydrous basic volcanism in Klyuchevskoy and other Central Kamchatka depression volcanoes is explained by a model in which the ascending primitive melts that resulted from the hydrous melt fluxing of mantle wedge peridotite, interacted with the shallow high-δ18O lithospheric mantle that had been extensively hydrated during earlier times when it was part of the Kamchatka forearc. Following accretion of the Eastern Peninsula terrains several million years ago, a trench jump eastward caused the old forearc mantle to be beneath the presently active arc. Variable interaction of ascending flux-melting-derived melts with this older, high-δ18O lithospheric mantle has produced mafic parental magmas with a spectrum of δ18O values. Differentiation of the higher δ18O parental magmas has created the volumetrically dominant high-Al basalt series. Both basalt types incessantly rise and mix between themselves and with variable in δ18O cumulates within dynamic Klyuchevskoy magma plumbing system, causing biannual eruptions and heterogeneous magma products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
39.
Late Cretaceous (66.2 ± 0.5 Ma amphibole and 66.7 ± 0.2 Ma phlogopite 40Ar/39Ar ages) nephelinitic volcanic rocks from Godzilla Seamount in the eastern North Atlantic (34°N latitude) have trace element and Sr–Nd–Pb–Hf-isotope compositions similar to the Enriched Mantle I (EM-I) endmember, except for their low 207Pb/204Pb relative to 206Pb/204Pb ratios (206Pb/204Pbin = 17.7, 207Pb/204Pbin = 15.34) plotting below the Northern Hemisphere Reference Line on the uranogenic Pb isotope diagram. O isotope data on amphibole separates are mantle-like (δ18O = 5.6–5.8‰). Age and location of the isolated Godzilla Seamount, however, preclude it from being derived from the Madeira or Canary hotspots, making a lower-mantle origin unlikely. Therefore we propose derivation from a shallow (lithospheric/asthenospheric) melting anomaly. As observed in mid-ocean-ridge and ocean-island basalts, there is a systematic decrease of 207Pb/204Pb ratios (and Δ7/4) in the individual EM-I endmember type localities towards northern latitudes with Godzilla lying on the extension of this trend. This trend is mirrored in ultra-potassic volcanic rocks such as lamproites and kimberlites, which reflect the composition of enriched subcontinental lithospheric mantle. Therefore, a global pattern in 207Pb/204Pb ratios and Δ7/4 is suggested. The geochemical composition of EM-I endmember type localities, including Godzilla lavas, and the enriched (DUPAL) anomaly in the southern hemisphere could reflect derivation from ancient, metasomatized subcontinental lithospheric mantle. We propose a two-stage model to explain the trace element and isotopic composition of the EM-I mantle endmember localities worldwide: 1) during the early history of the Earth, subcontinental lithosphere was metasomatized by melts from subducted slabs along convergent margins generating high μ (238U/204Pb) sources, and 2) as the Earth cooled, hydrous fluids replaced hydrous melts as the main slab component metasomatizing the subcontinental lithospheric mantle (generating EM-I sources with lower μ). In accordance with this model, the global variations in 207Pb/204Pb ratios and Δ7/4 could reflect geographic differences in μ and/or the age at which the transition from stages 1 to 2 took place in the Archaean lithosphere. The model would require a re-definition of the EM-I endmember to low 206Pb/204Pb, high 208Pb/204Pb (positive Δ8/4) but variable 207Pb/204Pb (positive and negative Δ7/4).  相似文献   
40.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号