首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   13篇
  国内免费   18篇
测绘学   6篇
大气科学   40篇
地球物理   118篇
地质学   153篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   11篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   24篇
  2009年   25篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
81.
Elongated aerosol particle removal on fibrous filters has been investigated. It was shown that particle agglomerates are removed much more efficiently compared to the regularly shaped single particles with identical electrical mobility diameter at two filtration velocities tested. The experimental results were compared with the classical filtration theory and it was shown that the theoretical predictions, which are based on the assumption that the particles are spherical, are significantly different compared to an agglomerate filtration efficiency value. In order to account for a particle shape non-regularity, dominating nanoparticle removal mechanisms were firstly evaluated for a regular particle of certain size and then adjusted by fitting coefficients k1 (for diffusion component) and k2 (for interception). These coefficients were determined by fitting the theoretical values that gives the best coincidence with the measured data points. As was further demonstrated theoretically, the coefficient k1 is identical to the ratio of the actual particle surface area to the surface area of the spherical particle of the equivalent diameter. On the other hand, the coefficient k2 was found to be equal to the ratio of the projection of a given particle on a plane perpendicular to a streamline, to that of the spherical particle of the equivalent diameter. The reported findings would allow undertaking more accurate evaluation of the removal efficiency of non-regular aerosol particle, which is especially important for industrial applications where non-regular aerosols are frequently met.  相似文献   
82.
We show that recently published assertions that advection-dominated accretion flows (ADAFs) require the presence of strong winds are unfounded because they assume that low radiative efficiency in flows accreting at low rates on to black holes implies vanishing radial energy and angular momentum fluxes through the flow (which is also formulated in terms of the 'Bernoulli function' being positive). This, however, is a property only of self-similar solutions which are an inadequate representation of global accretion flows. We recall general properties of accretion flows on to black holes and show that such, necessarily transonic, flows may have either d positive or negative Bernoulli function depending on the flow viscosity. Flows with low viscosities ( α ≲0.1 in the α -viscosity model) have a negative Bernoulli function. Without exception, all 2D and 1D numerical models of low-viscosity flows constructed to date experience no significant outflows. At high viscosities the presence of outflows depends on the assumed viscosity, on the equation of state and on the outer boundary condition. The positive sign of the Bernoulli function invoked in this context is irrelevant to the presence of outflows. As an illustration, we recall 2D numerical models with moderate viscosity that have positive values of the Bernoulli function and experience no outflows. ADAFs, therefore, do not differ from this point of view from thin Keplerian discs: they may have, but they do not have to have, strong winds.  相似文献   
83.
84.
UBV RI photometry and 4600–9000 Å spectroscopy of nova V475 Sct taken in the first 3 month after discovery is presented. The object can be classified as a Fe II type slow nova with t 2,V = 48 days, t 3,V = 53 days. The absolute magnitude of the nova at maximum, its colour excess and distance were determined. The observed 13.4 day periodicity of flares can be explained by the mass transfer bursts from the red to the white dwarf, probably caused by the periastron passage of a third body. Two sets of absorptions are seen in the P Cyg-type Hα line profile. They arise in the expanding shell of the nova.  相似文献   
85.
We analyzed the molybdenum (Mo) isotope compositions (IC) of 59 samples from two molybdenite mineralizations (Alpjahorn and Grimsel) and from a Mo-rich hydrothermal breccia (Grimsel) from the Aar Massif, Switzerland. The formation temperature of the Late Paleozoic Mo mineralizations (300-600 °C) is much higher than that of the Pliocene breccia (100-160 °C). The Mo IC of the molybdenites varies over 1.35‰. Even in a single hand specimen it spans 0.45‰, indicating that fractionation processes during molybdenite precipitation can vary on a cm scale. The Mo IC of most molybdenites analyzed here are significantly heavier than that of the host rock (δ98/95Mo = (0.05 ± 0.1)‰) and show a bimodal distribution centered around δ98/95Mo ≈ 1.1‰ and 0.2‰. This result rules out single stage Rayleigh fractionation as the relevant formation mechanism and instead, redox variations are suggested to be a main factor controlling the Mo IC of the studied high-temperature Mo deposits. The range of the Mo IC in one single deposit, the Alpjahorn, overlaps with the variation range of almost all other published values for Mo IC in Mo deposits. Compared to the molybdenites, the breccia shows an even wider variation of 3.0‰ (δ98/95Mo between −1.6‰ and +1.4‰). In contrast to the high-T molybdenite deposits, here the Mo was transported via oxidized surface waters into the breccia system, where it was reduced and precipitated. This indicates that oxidation and reduction of Mo complexes may lead to highly variable Mo IC in hydrothermal systems.  相似文献   
86.
We report on the preliminary analysis of the high-resolution spectrum of CometC/2000 WM1 (LINEAR), obtained on Dec. 1, 2001 with the Fiber fed ExtendedRange Optical Spectrograph (FEROS) installed on the 1.52-m telescope of ESO(Chile). Many emission lines of the molecules C2, C3, CN, CH, CH+,NH2, CO, CO+, H2O+ and, presumably, C2 - were identifiedin the spectral range 400–900 nm. Also, near-infrared photometry was performed on Dec. 2 and 3, with the infraredcamera (CamIV) attached to the 0.60-m Boller and Chivens telescope of the Picodos Dias Observatory (LNA/MCT), Brazil. We report the preliminary and comparativeanalysis of the I-J and J-H color indices.  相似文献   
87.
The “paraboloid” model of Mercury’s magnetospheric magnetic field is used to determine the best-fit magnetospheric current system and internal dipole parameters from magnetic field measurements taken during the first and second MESSENGER flybys of Mercury on 14 January and 6 October 2008. Together with magnetic field measurements taken during the Mariner 10 flybys on 29 March 1974 and 16 March 1975, there exist three low-latitude traversals separated in longitude and one high-latitude encounter. From our model formulation and fitting procedure a Mercury dipole moment of 196 nT ·  (where RM is Mercury’s radius) was determined. The dipole is offset from Mercury’s center by 405 km in the northward direction. The dipole inclination to Mercury’s rotation axis is relatively small, ∼4°, with an eastern longitude of 193° for the dipole northern pole. Our model is based on the a priori assumption that the dipole position and the moment orientation and strength do not change in time. The root mean square (rms) deviation between the Mariner 10 and MESSENGER magnetic field measurements and the predictions of our model for all four flybys is 10.7 nT. For each magnetic field component the rms residual is ∼6 nT or about 1.5% of the maximum measured magnetic field, ∼400 nT. This level of agreement is possible only because the magnetospheric current system parameters have been determined separately for each flyby. The magnetospheric stand-off distance, the distance from the planet’s center to the inner edge of the tail current sheet, the tail lobe magnetic flux, and the displacement of the tail current sheet relative to the Mercury solar-magnetospheric equatorial plane have been determined independently for each flyby. The magnetic flux in the tail lobes varied from 3.8 to 5.9 MWb; the subsolar magnetopause stand-off distance from 1.28 to 1.43 RM; and the distance to the inner edge of the current sheet from 1.23 to 1.32 RM. The differences in the current systems between the first and second MESSENGER flybys are attributed to the effects of strong magnetic reconnection driven by southward interplanetary magnetic field during the latter flyby.  相似文献   
88.
Variability of the Earth’s structure makes a first-order impact on attenuation measurements which often does not receive adequate attention. Geometrical spreading (GS) can be used as a simple measure of the effects of such structure. The traditional simplified GS compensation is insufficiently accurate for attenuation measurements, and the residual GS appears as biases in both Q 0 and η parameters in the frequency-dependent attenuation law Q(f) = Q 0 f η . A new interpretation approach bypassing Q(f) and using the attenuation coefficient χ(f) = γ + πf/Q e(f) resolves this problem by directly measuring the residual GS, denoted γ, and effective attenuation, Q e. The approach is illustrated by re-interpreting several published datasets, including nuclear-explosion and local-earthquake codas, Pn, and synthetic 50–300-s surface waves. Some of these examples were key to establishing the Q(f) concept. In all examples considered, χ(f) shows a linear dependence on the frequency, γ ≠ 0, and Q e can be considered frequency-independent. Short-period crustal body waves are characterized by positive γ SP values of (0.6–2.0) × 10?2 s?1 interpreted as related to the downward upper-crustal reflectivity. Long-period surface waves show negative γ LP ≈ ?1.9 × 10?5 s?1, which could be caused by insufficient modeling accuracy at long periods. The above γ values also provide a simple explanation for the absorption band observed within the Earth. The band is interpreted as apparent and formed by levels of Q e ≈ 1,100 within the crust decreasing to Q e ≈ 120 within the uppermost mantle, with frequencies of its flanks corresponding to γ LP and γ SP. Therefore, the observed absorption band could be purely geometrical in nature, and relaxation or scattering models may not be necessary for explaining the observed apparent Q(f). Linearity of the attenuation coefficient suggests that at all periods, the attenuation of both Rayleigh and Love waves should be principally accumulated at the sub-crustal depths (~38–100 km).  相似文献   
89.
An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer   总被引:2,自引:27,他引:2  
Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号