首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   15篇
  国内免费   17篇
测绘学   6篇
大气科学   40篇
地球物理   118篇
地质学   152篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   20篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   24篇
  2009年   25篇
  2008年   21篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   19篇
  2001年   12篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有429条查询结果,搜索用时 203 毫秒
391.
New three-dimensional numerical non-hydrostatic model with a free surface that was designed for modelling the bottom and bank stability subjected by ship propeller jets is presented. Unlike all known models, it describes three-dimensional fields of velocities generated by ship propellers, turbulence intensity and length scale in the given domain of arbitrary bottom and coastal topography. Results of simulations are compared with the laboratory experiments.  相似文献   
392.
Time series of hydrographic sections in the northern North Atlantic from the period 1990 to 2004 are analyzed for changes in the characteristics and distribution of water masses that are involved in the thermohaline circulation (THC). During the 1990s, the North Atlantic Oscillation (NAO) alternates from a positive phase (strong westerlies) to a negative phase (weak westerlies). The reduced ocean heat loss confined the convection in the Labrador Sea to the upper 1,200 m, generating a new salinity minimum layer characterizing the Upper Labrador Sea Water (ULSW), and led to a warming and salinization of the older LSW below due to lateral mixing. The Lower LSW, formed in the first half of the 1990s, spread in the subpolar gyre and reached the Newfoundland and Irminger basins after about 1 to 2 years, where the associated isopycnal doming contributed to eastward frontal shifts in the upper layer. After 5 and 6 years, it arrived in the Iceland and West European basins, respectively. The collapse of the isopycnal dome in the Labrador Sea, associated with the drainage of the Lower LSW, resulted in a slowing of the cyclonic circulation of the subpolar gyre. This was accompanied in the upper layer by a westward shift of the southeastern extension of the gyre and a northward advection of warm and saline subtropical water in its eastern part, which finally reached the Labrador Sea after about 7 years. In the upper layer of the Labrador Sea, the advection of warm and saline water dominated over the heat loss to the atmosphere and the freshwater gain from melting ice and precipitation in the NAO-low period, so that no accumulation of freshwater but an increase of the heat and salt contents were observed, as in the whole eastern part of the subpolar gyre. Within 1 to 2 years after the drop of the NAO in the winter of 1995/1996, the Subarctic (Subpolar) Front shifted northward and westward north of about 50°N, favored by the retreat of the low-salinity tongue extending eastward from the southern Labrador Sea, and it shifted southward and eastward in the Newfoundland Basin. Therefore, the enhanced northward advection of subtropical waters in the northeastern North Atlantic is balanced by the enhanced southward advection of subarctic waters, including Lower LSW in the Newfoundland Basin, indicating a strong response of the gyre component of the THC.  相似文献   
393.
The western border of South America is one of the most important seismogenic regions in the world. In this region the most damaging earthquake ever recorded occurred. In June 23rd, 2001, another very strong earthquake (Mw = 8.1–8.2) occurred and produced death and damages in the whole southern region of Peru. This earthquake was originated by a friction process between Nazca and South American plates and affected an area of about 300 km × 120 km defined by the distribution of more than 220 aftershocks recorded by a local seismic network that operated 20 days. The epicenter of the main shock was localized in the northwestern extremity of the aftershock area, which suggests that the rupture propagated towards the SE direction. The modeling of P-wave for teleseismic distances permitted to define a focal mechanism of reverse type with NW-SE oriented nodal planes and a possible fault plane moving beneath almost horizontally in NE direction. The source time function (STF) suggests a complex process of rupture during 85 sec with 2 successive sources. The second one of greater size, and located approximately 100–120 km toward the SE direction was estimated to have a rupture velocity of about 2 km/sec on a 28°-dipping plane to the SE (N135°). A second event happened 45 sec after the first one with an epicenter 130km farther to the SE and a complex STF. This event and the second source of the main shock caused a Tsunami with waves from 7 to 8 meters that propagated almost orthogonally to the coast line, by affecting mainly the Camaná area.Three of all the aftershocks presented magnitudes greater or equal to Mw = 6.6, two of them occurred in front of the cities of Ilo and Mollendo (June 26th and July 7th) with focal mechanisms similar to the main seismic event. The aftershock of July 5th shows a normal mechanism at a depth of 75 km, and is therefore most likely located within the subducting Nazca plate and not in the coupling. The aftershocks of June 26th (Mw = 6.6) and July 5th (Mw = 6.6) show simple short duration STF. The aftershock of July 7th (Mw = 7.5) with 27-second duration suggests a complex process of energy release with the possible occurrence of a secondary shock with lower focal depth and focal mechanism of inverse type with a great lateral component. Simple and composed focal mechanisms were elaborated for the aftershocks and all have similar characteristics to the main earthquake.The earthquake of June 23rd caused major damages in the whole southern Peru. The damage in towns of Arequipa, Moquegua allow to consider maximum intensities from 6 to 7 (MSK79). In Alto de la Alianza and Ciudad Nueva zones from Tacna, the maximum intensity was of 7 (MSK79).  相似文献   
394.
Geological mapping and structural analysis of the Talas Ala Tau (Tien Shan, Kyrgyz Republic) have revealed a complex structure composed of folds with axial-plane cleavage and thrust faults verging towards the NE. The main structures of the range correspond to minor Tertiary and Carboniferous–Permian deformation superimposed on the main deformation event that took place during the Baikalian orogeny. The pervasive axial-plane cleavage diminishes in penetrativity from the hinterland to the foreland in both the Uzunakhmat and Karagoin sheets. The main thrusts developed phyllonitic shear-related rocks on the hangingwall immediately above the thrust planes. A crystal-chemical study of the phyllosilicates growth during the Baikalian deformation event along a cross-section revealed changes in the crystallinity, composition and lattice parameters of them. The phyllosilicates present in the Talas Ala Tau rocks were crystallized in very low-grade metamorphic conditions, that is below 300 °C, as indicated by their Kübler Index (KI), which decreases from SW towards the NE. Detailed TEM study of the phyllosilicates reveals a clear textural difference at the lattice level between samples with higher or lower KI parameters. There is also a clear difference in crystal-chemical parameters (KI and b) and composition between the phyllosilicates growth in relation to the axial-plane cleavage and the ones belonging to the thrust-related phyllonites. The first ones are more affected by the ferrimuscovitic vector than the phyllosilicates of phyllonites, closer to the theoretical phengitic component. Huge ranges of values of phengitic content of micas at sample level are interpreted as the result of a decompression path from at least 8 kbar. We propose a subduction geodynamic environment for the regional deformation and the origin of the phyllosilicates, as they are similar to those obtained in more recent accretionary complexes.  相似文献   
395.
We design a velocity–porosity model for sand-shale environments with the emphasis on its application to petrophysical interpretation of compressional and shear velocities. In order to achieve this objective, we extend the velocity–porosity model proposed by Krief et al., to account for the effect of clay content in sandstones, using the published laboratory experiments on rocks and well log data in a wide range of porosities and clay contents. The model of Krief et al. works well for clean compacted rocks. It assumes that compressional and shear velocities in a porous fluid-saturated rock obey Gassmann formulae with the Biot compliance coefficient. In order to use this model for clay-rich rocks, we assume that the bulk and shear moduli of the grain material, and the dependence of the compliance on porosity, are functions of the clay content. Statistical analysis of published laboratory data shows that the moduli of the matrix grain material are best defined by low Hashin–Shtrikman bounds. The parameters of the model include the bulk and shear moduli of the sand and clay mineral components as well as coefficients which define the dependence of the bulk and shear compliance on porosity and clay content. The constants of the model are determined by a multivariate non-linear regression fit for P- and S-velocities as functions of porosity and clay content using the data acquired in the area of interest. In order to demonstrate the potential application of the proposed model to petrophysical interpretation, we design an inversion procedure, which allows us to estimate porosity, saturation and/or clay content from compressional and shear velocities. Testing of the model on laboratory data and a set of well logs from Carnarvon Basin, Australia, shows good agreement between predictions and measurements. This simple velocity-porosity-clay semi-empirical model could be used for more reliable petrophysical interpretation of compressional and shear velocities obtained from well logs or surface seismic data.  相似文献   
396.
1. Introduction In spite of the progress achieved in global climatemodelling during the last few decades, the models stillshow considerable errors even for the surface air tem-perature ?eld (Covey et al., 2000; IPCC, 2001; Lam-bert and Boer, 2001). As i…  相似文献   
397.
Based on the log-normal distribution of the grain size density function derived earlier for the entire zone of mineral disintegration, a unified granulometric taxon of perennially frozen soils is proposed which generalizes the existing soil classifications.  相似文献   
398.
399.
We investigated the potential of using a 24-electrode resistivity imaging apparatus for rapid reconnaissance surveys for natural-aggregate accumulation. The surveys were first calibrated at sites with known geometry of sand and gravel layers, which showed that subsurface accumulation of coarse material was accurately resolved with both 2- and 4-m electrode spacing. The inverted absolute resistivity of economically viable gravel deposits varied in the range of 300–1500 Ω m, depending on variation in ground-moisture levels. The exploration surveys were then conducted at seven sites where geomorphological analyses indicated a potential for gravel. Four of these sites, where subsurface resistivity did not exceed 30–40 Ω m, were found to have very little or no coarse material. The three remaining sites showed significant accumulations of high-resistivity material, two of which were subsequently augered for verification. The results of drilling demonstrated that resistivity images were an effective indicator of the presence of coarse material in the subsurface, allowing accurate determination of subsurface distribution and thickness of sand and gravel strata. The total volume of a deposit could easily be estimated from resistivity images. The absolute quality and economic value of the material, is, however, difficult to ascertain from resistivity images alone without drilling.  相似文献   
400.
Summary The harmonically variable magnetic field, generated by a tangential magnetic dipole (TMD), located eccentrically at the surface of the Earth's core, is investigated for various periods of time variations and for a three-layer conductivity model of the Earth. Numerical computations have shown that the field is inductively damped for variation periods of less than 500 years as compared to the field of a static TMD. It is proved that the field appropriate to the TMD, has a more complicated distribution of the Earth's surface than the field of a radial magnetic dipole. Comparison with maps of the non-dipole part of the geomagnetic field shows that the TMD is not as suitable for interpreting the observed non-dipole field and its variations as the eccentric radial magnetic dipole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号