首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   15篇
  国内免费   17篇
测绘学   6篇
大气科学   40篇
地球物理   122篇
地质学   166篇
海洋学   43篇
天文学   64篇
综合类   4篇
自然地理   19篇
  2022年   6篇
  2021年   10篇
  2020年   11篇
  2019年   8篇
  2018年   21篇
  2017年   12篇
  2016年   27篇
  2015年   13篇
  2014年   20篇
  2013年   22篇
  2012年   23篇
  2011年   20篇
  2010年   25篇
  2009年   26篇
  2008年   22篇
  2007年   23篇
  2006年   15篇
  2005年   18篇
  2004年   20篇
  2003年   12篇
  2002年   19篇
  2001年   14篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   5篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1964年   1篇
  1957年   1篇
排序方式: 共有464条查询结果,搜索用时 694 毫秒
91.
Coexisting melt (MI), fluid-melt (FMI) and fluid (FI) inclusions in quartz from the Oktaybrskaya pegmatite, central Transbaikalia, have been studied and the thermodynamic modeling of PVTX-properties of aqueous orthoboric-acid fluids has been carried out to define the conditions of pocket formation. At room temperature, FMI in early pocket quartz and in quartz from the coarse-grained quartz–oligoclase host pegmatite contain crystalline aggregates and an orthoboric-acid fluid. The portion of FMI in inclusion assemblages decreases and the volume of fluid in inclusions increases from the early to the late growth zones in the pocket quartz. No FMI have been found in the late growth zones. Significant variations of solid/fluid ratios in the neighboring FMI result from heterogeneous entrapment of coexisting melts and fluids by a host mineral. Raman spectroscopy, SEM EDS and EMPA indicate that the crystalline aggregates in FMI are dominated by mica minerals of the boron-rich muscovite–nanpingite CsAl2[AlSi3O10](OH,F)2 series as well as lepidolite. Topaz, quartz, potassium feldspar and several unidentified minerals occur in much lower amounts. Fluid isolations in FMI and FI have similar total salinity (4–8 wt.% NaCl eq.) and H3BO3 contents (12–16 wt.%). The melt inclusions in host-pegmatite quartz homogenize at 570–600 °C. The silicate crystalline aggregates in large inclusions in pocket quartz completely melt at 615 °C. However, even after those inclusions were significantly overheated at 650±10 °C and 2.5 kbar during 24 h they remained non-homogeneous and displayed two types: (i) glass+unmelted crystals and (ii) fluid+glass. The FMI glasses contain 1.94–2.73 wt.% F, 2.51 wt.% B2O3, 3.64–5.20 wt.% Cs2O, 0.54 wt.% Li2O, 0.57 wt.% Ta2O5, 0.10 wt.% Nb2O5, 0.12 wt.% BeO. The H2O content of the glass could exceed 12 wt.%. Such compositions suggest that the residual melts of the latest magmatic stage were strongly enriched in H2O, B, F, Cs and contained elevated concentrations of Li, Be, Ta, and Nb. FMI microthermometry showed that those melts could have crystallized at 615–550 °C.

Crystallization of quartz–feldspar pegmatite matrix leads to the formation of H2O-, B- and F-enriched residual melts and associated fluids (prototypes of pockets). Fluids of different compositions and residual melts of different liquidus–solidus PT-conditions would form pockets with various internal fluid pressures. During crystallization, those melts release more aqueous fluids resulting in a further increase of the fluid pressure in pockets. A significant overpressure and a possible pressure gradient between the neighboring pockets would induce fracturing of pockets and “fluid explosions”. The fracturing commonly results in the crushing of pocket walls, formation of new fractures connecting adjacent pockets, heterogenization and mixing of pocket fluids. Such newly formed fluids would interact with a primary pegmatite matrix along the fractures and cause autometasomatic alteration, recrystallization, leaching and formation of “primary–secondary” pockets.  相似文献   

92.
Geochemistry of chlorine and fluorine in apatites, micas, and amphiboles in rocks from eight intrusive complexes of the Siberian Platform has been first studied on the basis of new factual and analytical data (more than 1000 analyses). The main attention is focused on minerals from layered intrusions. Most apatites show F > Cl; the maximum contents of halogens are specific to chlorapatite (6.97 wt.% Cl) and fluorapatite (6.04 wt.% F). The total f value (f = Fe/(Fe + Mg), at.%) of femic minerals varies from 2 to 98 at.% in micas and from 22 to 95 at.% in amphiboles. The Cl-f and F-f trends show an increase in the Cl content and a decrease in the F content in the minerals with increasing f. Chlorine clearly exhibits ferrophilic properties, and fluorine has magnesiophilic properties. The halogen-richest minerals are fluorophlogopite (F = 7.06 wt.%, f = 7 at.%), chlorannite (Cl = 6.30 wt.%, f = 89 at.%), and chloroferrihastingsite (Cl = 5.22 wt.%, f = 90 at.%). Coexisting micas and amphiboles in the rocks are close in f value, but the micas are richer in Cl than the amphiboles. We assume that the halogen-containing minerals crystallized at the high pressure of halogen-hydrocarbon fluids at the levels of the MW, IW, and QIF buffers. The reducing conditions of the magmatism process are also evidenced by the presence of graphite and native metals in the rocks. The similarity of the Cl-f and F-f trends of micas and amphiboles from different intrusive complexes indicates the same mechanisms of the melt differentiation and mineral crystallization.  相似文献   
93.
Dredged samples from the Geophysicist seamount volcano in the northeastern part of the Kurile Basin include volcanic and volcanoclastic rocks ranging from basalt to andesite. The rocks have geochemical features typical of high-K island-arc calc-alkaline volcanism. They are enriched in LILE and depleted in Zr, Ti, Nb, Ta and Y. The chondrite-normalized REE patterns are characterized by enrichment of LREE similar to those of island-arc lava from the submarine volcanoes of rear-arc zone of the Kurile Island Arc. The volcanic rocks have a wide range of 87Sr/86Sr ratios (0.70287-0.70652), varying 143Nd/144Nd and Pb isotopic ratios. Their trace-element compositions and Sr-Nd-Pb isotope signatures may be explained by a small addition of crustal continental component to mantle-derived magmas that suggest the existence of thinned continental basement under the eastern part of the Kurile Basin.  相似文献   
94.
The Ni-Cu-platinum group element sulfide ore deposits of the Kharaelakh Intrusion,Noril′sk Region,Siberia,represent a large concentration of sulfides associated with a small differentiated intrusion formed at the edge of the Siberian Craton in the roots of the Siberian Trap flood basalt.The deposit is associated with an intrusion that occupies a flanking periclinal structure adjacent to the Noril′sk-Kharaelakh Fault.The intrusion is strongly differentiated and comprises taxitic gabbrodolerites,picritic gabbrodolerites,and gabbrodolerites within the main body which in turn forms a chonolith within a sheet-like intrusion that extends laterally to form extensive undifferentiated sills of gabbrodolerite.The intrusion substantially replaces the stratigraphy of the country rocks,and although it appears to have exploited the axis of structures developed in response to transtension,the intrusion has created space by both mechanical dilation of stratigraphy and magmatic replacement of pre-existing sedimentary rocks.The frontal lobes of the main intrusion have complex apophyses of gabrodolerite on a range of scales that demonstrate replacement of the sedimentary rocks and link to the development of an extensive metamorphic halo in the country rocks.This halo is much narrower over the main body of the intrusion,and these observations have implications for the thermal history of the intrusion.Mg-skarns and breccias are developed in the roof of the main body of the intrusion.Within the intrusion,the taxitic rocks contain vesicles and the blebby sulfides developed in the picritic and taxitic gabbrodolerites appear to have a linkage to volatile phases.Cuprous sulfide mineralization developed at the roof of the Kharaelakh Intrusion is associated with metamorphosed and skarn-bearing country rocks,and appears to have been generated by a combination of sulfide fractionation and associated metasomatism.The geological relationships appear consistent with a chonolith model for the development of the differentiated intrusion and mineralization,but the extent of metasmorphism of the country rocks appears to be related to the unusual thickness of gabbrodolerite apophyses at the flanks of the intrusion rather than metamorphism produced by the passage of mafic magma through the intrusion.Variations in disseminated sulfide compositions and metasomatic textures in the skarns are described,and a model is proposed which balances traditional views on the evolution of the magma conduits with the impact of magmatic fluids transported through the magma column(i.e.transmagmatic fluids).The importance of structures in controlling the nature of the conduit,and the resultant small intrusions with excess sulfide is a feature of many other Ni-Cu sulfide deposits including Voisey′s Bay,and it is suggested that the sulfides are more likely to have beentransported from depth into their final resting place rather than developed by in-situ equilibration of sulfide with fresh magma in the chonolith.  相似文献   
95.
纬向平均环流预报的系统性误差及其改进   总被引:8,自引:0,他引:8  
大量的月预报实例分析表明,纬向平均环流(本指高度场纬向平均分量)存在明显的系统性预报误差,且在总误差中占有可观的份额。国内外其它模式也存在类似的现象。为克服这一困难,本尝试了“结合”(hybrid)的途径。应用重构相空间理论和非线性时空序列预测方法,在大量历史资料的基础上,构造了月尺度逐侯纬向平均高度场(零波分量)距平场的非线性预报模型。然后,将非线性预报和谱模式动力预报结合起来,即将非线性预报结果转化为模式需要的颅报量,再在模式积分过程中的每一步取代其相应部分,实施过程订正。初步试验结果表明,这种途样合效地减少了模式纬向环流的预报误差;特别是通过非线性波流相互作用,还改善了部分波动分量的预报。  相似文献   
96.
The amplitude-phase characteristics(APC)of surface air temperature(SAT)annual cycle(AC)in the Northern Hemisphere are analyzed.From meteorological observations for the 20th century and meteorological reanalyses for its second half,it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates.Nevertheless,some exceptions exist.The positive correlationbetween these two variables is found over the two desert regions:in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans.Southward of the characteristic annual mean snow-ice boundary (SIB) position,the shape ofthe SAT AC becomes more sinusoidal under climate warming.In contrast,northward of it,this shapebecomes less sinusoidal.The latter iS also found for the above-mentioned two desert regions.In theFar East(southward of about 50°N),the SAT AC shifts as a whole:here its spring and autumn phasesoccur earlier if the annual  相似文献   
97.
Digital elevation models (DEMs) are commonly constructed using two main types of regular grids: plane square grids and spheroidal equal angular grids. Methods and algorithms intended for plane square‐gridded DEMs should not be directly applied to spheroidal equal angular DEMs. This is because these grids have fundamentally different geometry. However, some researchers continue to apply square‐grid algorithms to spheroidal equal angular DEMs. It seems appropriate to consider once again the specifity of morphometric treatment of spheroidal equal angular DEMs. This article, first, demonstrates possibilities of direct calculation of local, nonlocal, and combined morphometric variables from spheroidal equal angular DEMs exemplified by slope gradient, catchment area, and topographic index. Second, the article shows computational errors when algorithms for plane square‐gridded DEMs are unreasonably applied to spheroidal equal angular DEMs. The study is exemplified by two DEMs. A medium‐resolution DEM of a relatively small, high‐mountainous area (Mount Elbrus) was extracted from the SRTM1 DEM. A low‐resolution DEM of a vast region with the diverse topography (the central and western regions of Kenya) was extracted from the SRTM30_PLUS DEM. The results show that application of square‐grid methods to spheroidal equal angular DEMs leads to substantial computational errors in models of morphometric variables.  相似文献   
98.
An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer   总被引:2,自引:27,他引:2  
Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.  相似文献   
99.
40Ar/39 Ar stepwise heating on one hydrothermal anhydrite and two partly hydrothermalized feldspars from a borehole in Vulcano volcano show that the initial trapped Ar does not have a constant isotopic composition. The constant 40Ar/36Ar ratio of the anhydrite, 306±3, is not a well-defined endmember for the two feldspars, which record a variety of fluid compositions. As the system is young (<100 ka), radiogenic Ar is much less than excess Ar.  相似文献   
100.
This article provides an ex post analysis of the compliance of the Parties to the Kyoto Protocol during the first commitment period (2008–2012) based on the final data for national GHG emissions and exchanges in carbon units that became available at the end of 2015. On the domestic level, among the 36 countries that fully participated in the Kyoto Protocol, only nine countries emitted higher levels of GHGs than committed and therefore had to resort to flexibility mechanisms. On the international level – i.e. after the use of flexibility mechanisms – all Annex B Parties are in compliance. Countries implemented different compliance strategies: purchasing carbon units abroad, stimulating the domestic use of carbon credits by the private sector and incentivizing domestic emission reductions through climate policies.

Overall, the countries party to the Protocol surpassed their aggregate commitment by an average 2.4 GtCO2e yr–1. Of the possible explanations for this overachievement, ‘hot-air’ was estimated at 2.2 GtCO2e yr–1, while accounting rules for land use, land-use change and forestry (LULUCF) further removed 0.4 GtCO2e yr–1 from the net result excluding LULUCF. The hypothetical participation of the US and Canada would have reduced this overachievement by a net 1 GtCO2e yr–1. None of these factors – some of which may be deemed illegitimate – would therefore on its own have led to global non-compliance, even without use of the 0.3 GtCO2e of annual emissions reductions generated by the Clean Development Mechanism. The impact of domestic policies and ‘carbon leakage’ – neither of which is quantitatively assessed here – should not be neglected either.

Policy relevance

Given the ongoing evolution of the international climate regime and the adoption of the Paris Agreement in December 2015, we believe that there is a need to evaluate the results of the first commitment period of the Kyoto Protocol. To our knowledge there has been no overarching quantitative ex post assessment of the Kyoto Protocol based on the final emissions data for 2008–2012, which became available in late 2015. This article attempts to fill this gap, focusing on the domestic and international compliance of the Parties to the Kyoto Protocol in the first commitment period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号