首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   15篇
  国内免费   17篇
测绘学   6篇
大气科学   40篇
地球物理   118篇
地质学   156篇
海洋学   42篇
天文学   48篇
综合类   4篇
自然地理   19篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   11篇
  2014年   21篇
  2013年   22篇
  2012年   20篇
  2011年   19篇
  2010年   23篇
  2009年   25篇
  2008年   22篇
  2007年   23篇
  2006年   13篇
  2005年   17篇
  2004年   18篇
  2003年   12篇
  2002年   21篇
  2001年   12篇
  2000年   9篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
  1957年   1篇
排序方式: 共有433条查询结果,搜索用时 78 毫秒
31.
Alpine deformation of Austroalpine units south of the Tauern window is dominated by two kinematic regimes. Prior to intrusion of the main Periadriatic plutons at ~30 Ma, the shear sense was sinistral in the current orientation, with a minor north-side-up component. Sinistral shearing locally overprints contact metamorphic porphyroblasts and early Periadriatic dykes. Direct Rb-Sr dating of microsampled synkinematic muscovite gave ages in the range 33-30 Ma, whereas pseudotachylyte locally crosscutting the mylonitic foliation gave an interpreted 40Ar-39Ar age of ~46 Ma. The transition from sinistral to dextral (transpressive) kinematics related to the Periadriatic fault occurred rapidly, between solidification of the earlier dykes and of the main plutons. Subsequent brittle-ductile to brittle faults are compatible with N-S to NNW-SSE shortening and orogen-parallel extension. Antithetic Riedel shears are distinguished from the previous sinistral fabric by their fine-grained quartz microstructures, with local pseudotachylyte formation. One such pseudotachylyte from Speikboden gave a 40Ar-39Ar age of 20 Ma, consistent with pseudotachylyte ages related to the Periadriatic fault. The magnitude of dextral offset on the Periadriatic fault cannot be directly estimated. However, the jump in zircon and apatite fission-track ages establishes that the relative vertical displacement was ~4-5 km since 24 Ma, and that movement continued until at least 13 Ma.  相似文献   
32.
Radiogenic isotopes in fluid inclusions   总被引:7,自引:0,他引:7  
Igor M. Villa   《Lithos》2001,55(1-4):115-124
Radiogenic isotopes studied in fluid inclusions are still a limited field, with great potential for expansion as analytical techniques improve. The main limitation for Sr, Ar and He isotope work is the very small number of radiogenic atoms produced in a typical fluid inclusion. The requirements to analysts are correspondingly high. Examples show that isotopic tracing on fluid inclusion fluids can be a decisive tool in solving geological problems.  相似文献   
33.
Igor V.  Kemkin 《Island Arc》1996,5(2):130-139
Abstract The geological structure of the Koreyskaya River area exhibits a complex combination of turbidite—olistostrome deposits making up a matrix and synsedimentary tectonic enclosures represented by allochthons of formations different in age and genesis. Three tectono-stratigraphic units can be distinguished, that have been combined into a single section by accretion. New data on radiolarians have been used to date the tectonic enclosures and matrix. Abundant Mesozoic radiolarians (from Triassic to Late Jurassic) and also Late Permian radiolarians were found in cherty and siliceous mudstone olistoliths and cherty allochthons.  相似文献   
34.
35.
36.
37.
Combining Lu–Hf garnet geochronology with in situ trace element analyses in garnet allowed us to gain new insight into the metamorphic evolution of UHP–UHT rocks in the Stary Gierałtów region, in the Polish Sudetes. Prograde garnet growth recorded by Rayleigh-type heavy REE (HREE) zoning in the felsic granulites indicates that the obtained 386.6 ± 4.9 Ma Lu–Hf age represents the time of garnet crystallization on a prograde UHP metamorphic path. The surrounding rocks were metamorphosed at the same time as indicated by 381.2 ± 6.7 Ma Sm–Nd garnet age obtained for the mid-crustal metapelites. The second metamorphic episode, which affected most of the lower crust in the Orlica–Śnieżnik Massif (OSM) occurred at ca. 340 Ma as determined by U–Pb zircon and Sm–Nd garnet dating of granulites in this and previous studies is interpreted as a high temperature event, which took place on a retrograde path.

Trace element distribution in garnets from the layered granulites showed significant differences in distribution of medium and HREE in garnets from mafic and felsic protoliths over the course of the metamorphic evolution. This had strong impact on the isotopic dating results and led to “decoupling” of the Sm–Nd and Lu–Hf clocks, which recorded timing of the two different metamorphic episodes separated by as much as 40 Ma. Moreover, the preservation of the HREE growth zonation profile in garnets from the felsic granulites whose minimum metamorphic temperature was established at 900 °C implies that the Lu–Hf system under relatively dry conditions does not undergo significant diffusional re-equilibration even at such extreme temperatures and therefore it sill provides the age of prograde garnet growth. Under hydrous conditions, at least some resetting will take place, as documented by the partially relaxed HREE zonation profile in the amphibolitised mafic granulite, which yielded a 10 Ma younger age. The HREE distribution study appeared to be a particularly valuable and essential tool, which allowed us to distinguish garnet growth from post-growth complexities and hence, provide improved age interpretation. Medium REE, on the other hand, did not show any obvious correlation with the isotopic signature of garnet.

Two distinct metamorphic episodes recorded in the Stary Gierałtów region show that buoyancy-driven uplift of UHP rocks can be arrested at the base of a continental crust if not supported by any additional force. In our case study, the UHP rocks would have never reached the surface if their uplift had not been resumed after a long pause under a different tectonic regime. The multistage, discontinuous uplift revealed by the UHP rocks of the OSM provides a new scenario for the exhumation of continental crust from mantle depths distinct from the fast-track exhumation histories recognized in UHP terranes elsewhere.  相似文献   

38.
We numerically construct slim, global, vertically integrated models of optically thin, transonic accretion discs around black holes, assuming a regularity condition at the sonic radius and boundary conditions at the outer radius of the disc and near the black hole. In agreement with several previous studies, we find two branches of shock-free solutions, in which the cooling is dominated either by advection or by local radiation. We also confirm that the part of the accretion flow where advection dominates is in some circumstances limited in size: it does not extend beyond a certain outer limiting radius. New results found in our paper concern the location of the limiting radius and the properties of the flow near to it. In particular, we find that beyond the limiting radius the advective-dominated solutions match on to Shapiro, Lightman &38; Eardley (SLE) discs through a smooth transition region. Therefore, the full global solutions are shock-free and unlimited in size. There is no need to postulate an extra physical effect (e.g. evaporation) for triggering the ADAF–SLE transition. It occurs as a result of standard accretion processes described by the classic slim disc equations.  相似文献   
39.
Inflow of Atlantic water (AW) from Fram Strait and the Barents Sea into the Arctic Ocean conditions the intermediate (100–1000 m) waters of the Arctic Ocean Eurasian margins. While over the Siberian margin the Fram Strait AW branch (FSBW) has exhibited continuous dramatic warming beginning in 2004, the tendency of the Barents Sea AW branch (BSBW) has remained poorly known. Here we document the contrary cooling tendency of the BSBW through the analysis of observational data collected from the icebreaker Kapitan Dranitsyn over the continental slope of the Eurasian Basin in 2005 and 2006. The CTD data from the R.V. Polarstern cruise in 1995 were used as a reference point for evaluating external atmospheric and sea-ice forcing and oxygen isotope analysis. Our data show that in 2006 the BSBW core was saltier (by ~0.037), cooler (by ~0.41 °C), denser (by ~0.04 kg/m3), deeper (by 150–200 m), and relatively better ventilated (by 7–8 μmol/kg of dissolved oxygen, or by 1.1–1.7% of saturation) compared with 2005. We hypothesize that the shift of the meridional wind from off-shore to on-shore direction during the BSBW translation through the Barents and northern Kara seas results in longer surface residence time for the BSBW sampled in 2006 compared with samples from 2005. The cooler, more saline, and better-ventilated BSBW sampled in 2006 may result from longer upstream translation through the Barents and northern Kara seas where the BSBW was modified by sea-ice formation and interaction with atmosphere. The data for stable oxygen isotopes from 1995 and 2006 reveals amplified brine modification of the BSBW core sampled downstream in 2006, which supports the assumption of an increased upstream residence time as indicated by wind patterns and dissolved oxygen values.  相似文献   
40.
Igor V. Holin 《Icarus》2010,207(2):545-548
Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10−5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury’s instantaneous spin-vector components to accuracy of a few parts in 107. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury’s crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号