Turbulent fluctuations have been investigated in the internal boundary layer (IBL) which forms after a dry-to-wet surface transition. The IBL is defined as that part of the atmospheric surface layer where the influence of the downstream surface is noticeable. The results of the application of three different quadrant analysis techniques are presented. The three techniques, in increasing order of the amount of information supplied, provide:
the diurnal variation of quadrant contribution (Ci), number fraction (Ti) and conditional average (% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeyykJeUabm4DayaafaGabm4CayaafaGaeyOkJe-aaSbaaSqaaiaa% dMgaaeqaaaaa!4215!\[\langle w's'\rangle _i \], with s = T or q) of vertical sensible and latent heat fluxes,
the quadrant contribution and number of samples of different sizes depending on the relative magnitude of each sample, and
the distribution of the nondimensional probability density function.
The results show that in the IBL the vertical flux of sensible heat is maintained by (i) a small fraction of large samples with warm air carried upwards, and (ii) a larger fraction of small samples with cool air carried downwards. Both processes are almost equal in importance. In the morning and near the top of the IBL negative temperature fluctuations are limited by the near-uniform temperature conditions upstream and above the IBL. This limitation reduces, at that location, the conditional average of the sinking motions of cool air. Closer to the wet surface the negative temperature fluctuations are less susceptible to the above mentioned limitation. As a consequence contributions from all four quadrants are almost equal leading to a very small vertical heat flux. In the presence of a temperature inversion over both the upstream and the downstream terrain, shear-generated turbulence appears to be the cause of the relative abundance of sinking motions of warm air and rising motions of cool air, leading to a reversal of the sensible heat flux. The latent heat flux is positive (i.e. directed away from the surface) at all times and is maintained in almost equal amount by (i) a small number of large magnitude samples with moist air carried upwards, and (ii) small magnitude samples with sinking motions of dry air. These sinking motions of dry air are far more numerous, especially in the morning, but their conditional average is very small. The abundance of sinking motions of dry air is attributed to the fact that over the downstream terrain evaporation is greatly enhanced, leading to a skewed w′q′ signal. This skewness is clearly visible in the w′q′-probability density distribution of the morning runs. In the evening the asymmetry between these two different contributions disappears. This is because evaporation is greatly reduced and large positive humidity fluctuations no longer occur. 相似文献
In this paper, we search the existence of Bianchi type I cosmological model in f(R,T) gravity, where the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the gravitational field equations in the metric formalism, and reconstruct the corresponding f(R,T) functions. Attention is attached to the special case, f(R,T)=f1(R)+f2(T) and two examples are assumed for this model. In the first example, we consider the unification of matter dominated and accelerated phases with f(R) gravity in anisotropic universe, and in the second instance, model of f(R,T) gravity with transition of matter dominated phase to the acceleration phase is obtained. In both cases, f(R,T) is proportional to a power of R with exponents depending on the input parameters. 相似文献
We have measured P- and S-wave velocities on two amphibolite and two gneiss samples from the Kola superdeep borehole as a function of pressure (up to 600 MPa) and temperature (up to 600 °C). The velocity measurements include compressional (Vp) and shear wave velocities (Vs1, Vs2) propagating in three orthogonal directions which were in general not parallel to inherent rock symmetry axes or planes. The measurements are accompanied by 3D-velocities calculations based on lattice preferred orientation (LPO) obtained by TOF (Time Of Flight) neutron diffraction analysis which allows the investigation of bulk volumes up to several cubic centimetres due to the high penetration depth of neutrons. The LPO-based numerical velocity calculations give important information on the different contribution of the various rock-forming minerals to bulk elastic anisotropy and on the relations of seismic anisotropy, shear wave splitting, and shear wave polarization to the structural reference frame (foliation and lineation). Comparison with measured velocities obtained for the three propagation directions that were not in accordance with the structural frame of the rocks (foliation and lineation) demonstrate that for shear waves propagating through anisotropic rocks the vibration directions are as important as the propagation directions. The study demonstrates that proper measurement of shear wave splitting by means of two orthogonal polarized sending and receiving shear wave transducers is only possible when their propagation and polarization directions are parallel and normal to foliation and lineation, respectively. 相似文献
Geology of Ore Deposits - Rare thallium minerals, avicennite and weissbergite, were found for the first time within the karst zones of the Khokhoy field of the Verkhnyaya Amga gold area, South... 相似文献
Man's engineering activities are concentrated on the uppermost part of the earth's crust which is called engineering-geologic zone. This zone is characterized by a significant spatialtemporal variation of the physical properties status of rocks, and saturating waters. This variation determines the specificity of geophysical and, particularly, geoelectrical investigations. Planning of geoelectric investigations in the engineering-geologic zone and their subsequent interpretation requires a priori) geologic-geophysical information on the main peculiarities of the engineering-geologic and hydrogeologic conditions in the region under investigation. This information serves as a basis for the creation of an initial geoelectric model of the section. Following field investigations the model is used in interpretation. Formalization of this a priori) model can be achieved by the solution of direct geoelectric problems. An additional geologic-geophysical information realized in the model of the medium allows to diminish the effect of the “principle of equivalence” by introducing flexible limitations in the section's parameters. Further geophysical observations as well as the correlations between geophysical and engineering-geologic parameters of the section permit the following step in the specification of the geolectric model and its approximation to the real medium. Next correction of this model is made upon accumulation of additional information. The solution of inverse problems with the utilization of computer programs permits specification of the model in the general iterational cycle of interpretation. 相似文献
Continuous high-precision long-term gravity measurements are carried out at the geophysical observatory located in the experimental base of Vladimir State University. The long time series of gravity acceleration and its standard deviation are obtained. The factors responsible for the increases in the studied deviations are analyzed. The recommendations for improving the accuracy of relative gravity measurements are formulated. 相似文献
The Archean metamorphic rocks of the Superior province of the Canadian Shield occur in lithologically defined belts or subprovinces. The tectonically more stable interiors of belts possess consistent primary components of magnetic remanence. In the case of the Quetico belt, these stable directions are tightly grouped about 005°/55° with some minor dispersion and most were acquired during the cooling that followed syntectonic recrystallisation.
This study examines the directions of primary remanence components for rocks along the margins of the Quetico belt, within 4 km of the strongly deformed vertical, ENE-trending boundaries. The boundaries are known to have experienced dextral transpression involving penetrative single-phase deformation which out-lasted metamorphism. Within a few kilometres of the belt boundaries, the primary remanence components are re-distributed along a vertical ENE-trending, great-circle girdle which is nearly parallel to the plane of transpressive shear and regional schistosity. It is suggested that the effects of transpression have mechanically deflected the components of primary remanence toward this plane. 相似文献