首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1976篇
  免费   59篇
  国内免费   16篇
测绘学   39篇
大气科学   150篇
地球物理   398篇
地质学   747篇
海洋学   133篇
天文学   372篇
综合类   7篇
自然地理   205篇
  2023年   9篇
  2021年   24篇
  2020年   28篇
  2019年   20篇
  2018年   43篇
  2017年   28篇
  2016年   52篇
  2015年   42篇
  2014年   48篇
  2013年   115篇
  2012年   55篇
  2011年   96篇
  2010年   85篇
  2009年   103篇
  2008年   97篇
  2007年   77篇
  2006年   81篇
  2005年   78篇
  2004年   83篇
  2003年   78篇
  2002年   88篇
  2001年   52篇
  2000年   43篇
  1999年   53篇
  1998年   52篇
  1997年   28篇
  1996年   24篇
  1995年   24篇
  1994年   30篇
  1993年   29篇
  1992年   25篇
  1991年   20篇
  1990年   24篇
  1989年   30篇
  1988年   15篇
  1987年   12篇
  1986年   17篇
  1985年   21篇
  1984年   28篇
  1983年   20篇
  1982年   17篇
  1981年   25篇
  1980年   23篇
  1979年   16篇
  1977年   12篇
  1976年   11篇
  1975年   7篇
  1974年   12篇
  1973年   8篇
  1970年   7篇
排序方式: 共有2051条查询结果,搜索用时 15 毫秒
51.
A large chondrule from Semarkona, the most primitive ordinary chondrite known, has been discovered to contain a record of mass transport during its formation. In most respects, it is a normal Type I, group A1, low-FeO chondrule that was produced by reduction and mass-loss during the unidentified flash-heating event that produced the chondrules, the most abundant structural component in primitive meteorites. We have previously measured elemental abundances and abundance profiles in this chondrule. We here report oxygen isotope ratio abundances and ratio abundance profiles. We have found that the mesostasis is zoned in oxygen isotope ratio, with the center of the chondrule containing isotopically heavier oxygen than the outer regions, the outer regions being volatile rich from the diffusion of volatiles into the chondrule during cooling. The δ17O values range from −2.0‰ to 9.9‰, while δ18O range from −1.9‰ to 9.6‰. More importantly, a plot of δ17O against δ18O has a slope of 1.1 ± 0.2 (1σ) and 0.88 ± 0.10 (1σ) when measured by two independent methods. Co-variation of δ17O with δ18O that does not follow mass-dependent fractionation has often been seen in primitive solar system materials and is usually ascribed to the mixing of different oxygen reservoirs. We argue that petrographic and compositional data indicate that this chondrule was completely melted at the time of its formation so that relic grains could not have survived. Furthermore, there is petrographic and compositional evidence that there was no aqueous alteration of this chondrule subsequent to its formation. Although it is possible to formulate a series of exchanges between the chondrule and external 16O-rich and 16O-poor reservoirs that may explain the detailed oxygen isotope systematics of this chondrule, such a sequence of events looks very contrived. We therefore hypothesize that reduction, devolatilization, and crystallization of the chondrule melt may have produced 16O-rich olivines and 16O-poor mesostasis plotting on a slope-one line as part of the chondrule-forming process in an analogous fashion to known chemical mass-independent isotopic fractionation mechanisms. During cooling, volatiles and oxygen near the terrestrial line in oxygen isotope composition produced the outer zone of volatile rich and 16O-rich mesostasis. The chondrule therefore not only retains a record of considerable mass transport accompanying formation, but also may indicate that the isotopes of oxygen underwent mass-independent fractionation during the process.  相似文献   
52.
Detrital zircons from the Mississippi River have been analyzed for U-Th-Pb, Lu-Hf and O isotopes to constrain the rate of growth of the preserved North American continental crust. One hundred and forty two concordant zircon U/Pb dates on grains mounted in epoxy, obtained by Excimer laser ablation ICP-MS method, resolved six major periods of zircon crystallization: 0-0.25, 0.3-0.6, 0.95-1.25, 1.3-1.5, 1.65-1.95 and 2.5-3.0 Ga. These age ranges match the ages of the recognized lithotectonic units of the North American continent in the hinterland of the Mississippi River. Ninety-six zircons mounted on tape, which show no age zonation and were within 7.5% of concordance, were selected to represent the six U/Pb age time intervals and analyzed for Lu-Hf and O isotope by laser ablation MC-ICP-MS and SHRIMP II, respectively. The δ18O values of the zircons show a small step increase in the maximum δ18O values at the Archean-Proterozoic boundary from 7.5‰ in the Archean to 9.5‰, and rarely 13‰, in the Proterozoic and Phanerozoic. However, the average value of δ18O in zircons changes little with time, showing that the increase in the maximum δ18O values between 2.5 and 2.0 Ga, which can be attributed to an increase in the sediment content of the source regions of younger granitoids, is largely balanced by an increase in zircons with anomalously low δ18O, which can be attributed to hydrothermally altered crust in the granitoid source region.εHfi values for the zircons range from 13.1 to −26.9. Zircons derived from juvenile crust, which we define as having mantle δ18O (4.5-6.5‰) and lying within error of the Hf depleted mantle growth curve, are rare or absent in the Mississippi basin. The overwhelming majority of zircons crystallized from melted pre-existing continental crust, or mantle-derived magmas that were contaminated by continental crust. The average time difference between primitive crust formation and remelting for each of the recognized lithotectonic time intervals, which is defined as crustal incubation time in this study, is 890 ± 460 Myr. There is also a suggestion that the crustal incubation time increases with decreasing age in the Mississippi basin, which is consistent with the declining role of radioactive heat production in the lower crust with time.The average Hf model age (1.94 Ga), weighted by fraction of zircons in the river load is in reasonable agreement with the Nd model age (1.7 Ga) for the Mississippi River. However, if the zircons are weighted by the area of North America covered by the six recognized periods of zircon crystallization the average model age is 2.35 Ga, which compares favorably with an area weighted Nd model age of 2.36 Ga. Our preferred approach is to use the measured O isotope values to constrain variations in the 176Lu/177Hf ratio of the granitic source region from which the zircons crystallized, making the assumption that zircons with mantle-like O isotopic ratios have higher 176Lu/177Hf than zircons with higher O isotope values. This method gives an average Hf model age of 2.53 Ga, which is 180 Myr older than the constant 176Lu/177Hf calculation.The area weighted zircon Hf model ages show two distinct periods of crust formation for the North American continent, 1.6-2.2 and 2.9-3.4 Ga. At least 50% of the preserved North American continental crust was extracted from the mantle by 2.9 Ga and 90% by 1.6 Ga. Two similar periods of crustal growth are also recognized in Gondwana (Hawkesworth C. J. and Kemp A. I. S. (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol.226, 144-162.), suggesting that these may be periods of global continental crustal growth. However, we stress that more data from other continents are required before the hypothesis of episodic global continental growth can be accepted with confidence.  相似文献   
53.
A carbon‐rich melt fragment from the Gardnos impact structure has been studied for a better understanding of the preservation and structural form(s) of carbon that have been processed by impact melting. The carbon was analyzed in situ in its original petrographic context within the melt fragment, using high‐resolution techniques including focused ion beam‐transmission electron microscopy and electron energy loss spectroscopy. Results show that the carbon is largely uniform and has a nanocrystalline grain size. The Gardnos carbon has a graphitic structure but with a large c/a ratio indicating disorder. The disorder could be a result of rapid heating to high temperatures during impact, followed by rapid cooling, with not enough time to crystallize into highly ordered graphite. However, temperature distribution during impact is extremely heterogenous, and the disordered Gardnos carbon could also represent material that avoided extreme temperatures, and thus, it was preserved. Understanding the structure of carbon during terrestrial impacts is important to help determine if the history of carbon within extraterrestrial samples is impact related. Furthermore, the degree of preservation of carbon during impact is key for locating and detecting organic compounds in extraterrestrial samples. This example from Gardnos, together with previous studies, shows that not all carbon is lost to oxidation during impact but that impact melting can encapsulate and preserve carbon where it is available.  相似文献   
54.
Human exploration of the Moon and Mars: implications for Aurora   总被引:1,自引:0,他引:1  
  相似文献   
55.
Syn-magmatic removal of the cumulate pile during the formation of the Bushveld Complex resulted in “potholes”. Erosion progressed downward in the cumulate pile, resulting in a series of steep, transgressive contacts between locally conformable potholed reefs in the regional pothole sub-facies of the Swartklip Facies in the western limb of the Bushveld Complex. The deepest of these potholes, “third-order” or “FWP2” potholing, occurs where the base of the Merensky Cyclic Unit transgresses the Upper Pseudo-Reef Chromitite marker horizon. The base of a FWP2 pothole on Northam Platinum Mine consists of an unconformable stringer Merensky Chromitite overlain by a medium-grained, poikilitic orthopyroxenite and underlain by either a pegmatitic harzburgite or the medium-grained Lower Pseudo-Reef Anorthosite. Detailed shape and distribution analysis of FWP2 potholes reveals underlying patterns in their shape and distribution which, in turn, suggest a structural control. The ratio between pothole short vs long axes is 0.624 (N=1,385), although the ratio increases from 0.48 to 0.61 in the long axis range 10 to 60 m, then decreases from 0.61 to 0.57 from 61 to 100 m, increasing again from 0.57 to 0.61 from 101 to 400 m, suggesting that there is not a simple relationship between pothole shape and size. Shape (circularity, eccentricity, and dendricity) analysis of a subset of 638 potholes indicates that potholes with long axes <100 m have an elliptical, average normalized shape, elongate on a 120–150° orientation. Potholes with long axis lengths >100 m have an average normalized shape that is bilobate and elongate on a 120° orientation. The average aspect ratio (short axis length divided by long axis length) of potholes is highest for potholes with long axis lengths >100 m and lowest for potholes with long axis lengths between 35 and 60 m. The most common long axis orientation for potholes with long axis lengths <100 m is 150° but 120° for long axis lengths >100 m. Fractal analysis indicates that the distribution of pothole centers is controlled neither by a single nor several interacting fractal dimensions. Autocorrelation (Fry) analysis of the distribution of pothole centers shows recurring pothole distribution trends at 038, 070, and 110° for potholes over the full range of long axis lengths, while the trends of 008 and 152° occur in potholes with long axes lengths between 60 and 100 m. Chi-squared (X 2) analysis of the locations of pothole centers suggests that the distribution of small potholes is highly non-uniform but becomes exponentially more uniform with increasing pothole size. The model which best fits the observed shape and distribution analysis is a combination of protracted independent growth and “nearest neighbor” merging along specific orientations. For instance, the clustered distribution of original pothole centers resulted in merged potholes with long axes lengths of up to 60 m, exhibiting short vs long axes ratios of 0.61, preferred orientations of 150°, and alignment along 010 and 150° trends. Further independent growth allowed for merging of similar-sized (and smaller) neighboring potholes, generating potholes with long axes of up to 100 m in length, a preferred long axis orientation of 150°, and alignment along 010, 040, 075, and 150°. Subsequent preferential merging occurred along a 120° trend, thereby preserving a bilobate form. This implies that while pothole initiation and enlargement may be driven by a “top-down” (i.e., possibly thermomechanical) process, an underlying linear or structural catalyst/control is revealed in changes in pothole shape during enlargement and, furthermore, in the preferred trends along which potholes merged over a considerable period, possibly concomitant with adjustment of major structures in the footwall to the Bushveld Complex and pulses into the magma chamber.  相似文献   
56.
57.
58.
The Hill-type stability (cf. closure of the zero-velocity curves in the circular restricted three-body problem) of general hierarchical three-body systems is examined analytically in the case where the total mass of the binary is small in comparison to the mass of the external body (e.g. systems of the type Planet-Satellite-Sun, Planet-Planet-Star, etc.). This is compared with results derived by Szebehely, Markellos and Roy in the Planet-Satellite-Sun case of the circular restricted three-body problem. It is demonstrated how the Hill-type stability is affected by the sense of revolution of the binary, i.e. corotational or contrarotational, and the mass ratio within the binary. The effect of the difference in longitudes of the bodies in their orbits is also examined.  相似文献   
59.
60.
Abstract— Puerto Lápice is a new eucrite fall (Castilla‐La Mancha, Spain, 10 May 2007). In this paper, we report its detailed petrography, magnetic characterization, mineral and bulk chemistry, oxygen and noble gas isotope systematics, and radionuclide data. Study of four thin sections from two different specimens reveal that the meteorite is brecciated in nature, and it contains basaltic and granulitic clasts, as well as recrystallized impact melt and breccia fragments. Shock veins are ubiquitous and show evidence of at least three different shock events. Bulk chemical analyses suggest that Puerto Lápice belongs to the main group of basaltic eucrites, although it has a significantly higher Cr content. Oxygen isotopes also confirm that the meteorite is a normal member of the HED suite. Noble gas abundances show typical patterns, with dominant cosmogenic and radiogenic contributions, and indicate an average exposure age of 19 ± 2 Ma, and a Pu‐fission Xe age well within typical eucrite values. Cosmogenic radionuclides suggest a preatmospheric size of about 20–30 cm in diameter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号