首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1937篇
  免费   59篇
  国内免费   16篇
测绘学   38篇
大气科学   148篇
地球物理   397篇
地质学   736篇
海洋学   133篇
天文学   345篇
综合类   7篇
自然地理   208篇
  2023年   9篇
  2022年   7篇
  2021年   25篇
  2020年   28篇
  2019年   20篇
  2018年   44篇
  2017年   28篇
  2016年   51篇
  2015年   42篇
  2014年   48篇
  2013年   116篇
  2012年   55篇
  2011年   96篇
  2010年   84篇
  2009年   101篇
  2008年   97篇
  2007年   74篇
  2006年   81篇
  2005年   74篇
  2004年   77篇
  2003年   75篇
  2002年   80篇
  2001年   51篇
  2000年   42篇
  1999年   53篇
  1998年   51篇
  1997年   28篇
  1996年   24篇
  1995年   24篇
  1994年   29篇
  1993年   29篇
  1992年   26篇
  1991年   20篇
  1990年   24篇
  1989年   30篇
  1988年   14篇
  1987年   12篇
  1986年   17篇
  1985年   21篇
  1984年   26篇
  1983年   19篇
  1982年   18篇
  1981年   25篇
  1980年   22篇
  1979年   16篇
  1977年   10篇
  1976年   11篇
  1975年   7篇
  1974年   12篇
  1970年   7篇
排序方式: 共有2012条查询结果,搜索用时 12 毫秒
51.
The whole-rock geochemistry of metamorphosed greywackes, arenites and arkoses within the Mesoproterozoic Namaqua-Natal-Maudheim Province is interpreted with the aim of establishing geochemical correlations and defining common sediment source terrains. Metasediments of the Mfongosi Group of the Natal Sector of the Namaqua-Natal Metamorphic Province were sampled from their type area in the Mfongosi Valley. Metagreywackes from the northern limits of the Mfongosi Valley, directly adjacent to the Kaapvaal Craton, show ocean island arc signatures while metagreywackes from the southern limits of the Mfongosi Valley, near the contact with the Madidima Thrust of the Natal nappe zone, show mainly active continental margin signatures. Interleaved, geochemically distinct low-Ca+Na, high-K metamorphosed arkoses to lithic arkoses indicate a minor passive margin sediment component. Geochemical classification of low-grade Ahlmannryggen Group greywackes, arenites and arkoses of the Grunehogna Province, Antarctica, indicates both active and passive continental margin sediment sources. An oceanic island arc signature is not evident in Ahlmannryggen Group data. The active continental margin signature in both Natal Sector and Grunehogna Province metasediments potentially provides for a common link between these terranes. Discriminant Function Analysis, using three pre-defined provenance sub-sets within the Mfongosi Group and two pre-defined provenance sub-sets within the Ahlmannryggen Group, indicate that metasediments with active continental margin signatures from both groups are geochemically identical, implying that the active continental margin of the Grunehogna Province shed immature sediments westwards (African azimuths) into the developing, narrow or restricted Mesoproterozoic ‘Mfongosi Basin.’ This was accompanied by minor sediment influx from a stable continental platform, potentially the Kaapvaal Craton. Oblique and diachronous collision, initiated in the southwestern portions of the combined Natal Sector/Grunehogna Province system produced a laterally variable Mfongosi Group, which formed in the ‘Mfongosi Basin’. Coarse-grained sediments dominated in its eastern portions while basalts with thin sapropelite units dominated in its western portions.  相似文献   
52.
A large chondrule from Semarkona, the most primitive ordinary chondrite known, has been discovered to contain a record of mass transport during its formation. In most respects, it is a normal Type I, group A1, low-FeO chondrule that was produced by reduction and mass-loss during the unidentified flash-heating event that produced the chondrules, the most abundant structural component in primitive meteorites. We have previously measured elemental abundances and abundance profiles in this chondrule. We here report oxygen isotope ratio abundances and ratio abundance profiles. We have found that the mesostasis is zoned in oxygen isotope ratio, with the center of the chondrule containing isotopically heavier oxygen than the outer regions, the outer regions being volatile rich from the diffusion of volatiles into the chondrule during cooling. The δ17O values range from −2.0‰ to 9.9‰, while δ18O range from −1.9‰ to 9.6‰. More importantly, a plot of δ17O against δ18O has a slope of 1.1 ± 0.2 (1σ) and 0.88 ± 0.10 (1σ) when measured by two independent methods. Co-variation of δ17O with δ18O that does not follow mass-dependent fractionation has often been seen in primitive solar system materials and is usually ascribed to the mixing of different oxygen reservoirs. We argue that petrographic and compositional data indicate that this chondrule was completely melted at the time of its formation so that relic grains could not have survived. Furthermore, there is petrographic and compositional evidence that there was no aqueous alteration of this chondrule subsequent to its formation. Although it is possible to formulate a series of exchanges between the chondrule and external 16O-rich and 16O-poor reservoirs that may explain the detailed oxygen isotope systematics of this chondrule, such a sequence of events looks very contrived. We therefore hypothesize that reduction, devolatilization, and crystallization of the chondrule melt may have produced 16O-rich olivines and 16O-poor mesostasis plotting on a slope-one line as part of the chondrule-forming process in an analogous fashion to known chemical mass-independent isotopic fractionation mechanisms. During cooling, volatiles and oxygen near the terrestrial line in oxygen isotope composition produced the outer zone of volatile rich and 16O-rich mesostasis. The chondrule therefore not only retains a record of considerable mass transport accompanying formation, but also may indicate that the isotopes of oxygen underwent mass-independent fractionation during the process.  相似文献   
53.
Detrital zircons from the Mississippi River have been analyzed for U-Th-Pb, Lu-Hf and O isotopes to constrain the rate of growth of the preserved North American continental crust. One hundred and forty two concordant zircon U/Pb dates on grains mounted in epoxy, obtained by Excimer laser ablation ICP-MS method, resolved six major periods of zircon crystallization: 0-0.25, 0.3-0.6, 0.95-1.25, 1.3-1.5, 1.65-1.95 and 2.5-3.0 Ga. These age ranges match the ages of the recognized lithotectonic units of the North American continent in the hinterland of the Mississippi River. Ninety-six zircons mounted on tape, which show no age zonation and were within 7.5% of concordance, were selected to represent the six U/Pb age time intervals and analyzed for Lu-Hf and O isotope by laser ablation MC-ICP-MS and SHRIMP II, respectively. The δ18O values of the zircons show a small step increase in the maximum δ18O values at the Archean-Proterozoic boundary from 7.5‰ in the Archean to 9.5‰, and rarely 13‰, in the Proterozoic and Phanerozoic. However, the average value of δ18O in zircons changes little with time, showing that the increase in the maximum δ18O values between 2.5 and 2.0 Ga, which can be attributed to an increase in the sediment content of the source regions of younger granitoids, is largely balanced by an increase in zircons with anomalously low δ18O, which can be attributed to hydrothermally altered crust in the granitoid source region.εHfi values for the zircons range from 13.1 to −26.9. Zircons derived from juvenile crust, which we define as having mantle δ18O (4.5-6.5‰) and lying within error of the Hf depleted mantle growth curve, are rare or absent in the Mississippi basin. The overwhelming majority of zircons crystallized from melted pre-existing continental crust, or mantle-derived magmas that were contaminated by continental crust. The average time difference between primitive crust formation and remelting for each of the recognized lithotectonic time intervals, which is defined as crustal incubation time in this study, is 890 ± 460 Myr. There is also a suggestion that the crustal incubation time increases with decreasing age in the Mississippi basin, which is consistent with the declining role of radioactive heat production in the lower crust with time.The average Hf model age (1.94 Ga), weighted by fraction of zircons in the river load is in reasonable agreement with the Nd model age (1.7 Ga) for the Mississippi River. However, if the zircons are weighted by the area of North America covered by the six recognized periods of zircon crystallization the average model age is 2.35 Ga, which compares favorably with an area weighted Nd model age of 2.36 Ga. Our preferred approach is to use the measured O isotope values to constrain variations in the 176Lu/177Hf ratio of the granitic source region from which the zircons crystallized, making the assumption that zircons with mantle-like O isotopic ratios have higher 176Lu/177Hf than zircons with higher O isotope values. This method gives an average Hf model age of 2.53 Ga, which is 180 Myr older than the constant 176Lu/177Hf calculation.The area weighted zircon Hf model ages show two distinct periods of crust formation for the North American continent, 1.6-2.2 and 2.9-3.4 Ga. At least 50% of the preserved North American continental crust was extracted from the mantle by 2.9 Ga and 90% by 1.6 Ga. Two similar periods of crustal growth are also recognized in Gondwana (Hawkesworth C. J. and Kemp A. I. S. (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem. Geol.226, 144-162.), suggesting that these may be periods of global continental crustal growth. However, we stress that more data from other continents are required before the hypothesis of episodic global continental growth can be accepted with confidence.  相似文献   
54.
The Bar Hill-Whitchurch-Wrexham Morainic Complex is a large-scale glacial landform thought to represent either the maximum extent or the re-advance of the British-Irish Ice Sheet during the Late Devensian. The origin of the moraine remains uncertain as its key characteristics have not been studied in detail due to a lack of exposures from which its large-scale structure can be determined. The development of new technologies has enabled detailed examination of the topography and internal structure of such large-scale landforms. This paper describes a multi-disciplinary approach involving digital geomorphological mapping using enhanced resolution NextMAP™ digital surface models, geophysical imaging (electrical resistivity tomography) and conventional sedimentological analyses. This combination of techniques is useful for elucidating the origin of a large glacial landform in a region of poor exposure. Digital elevation models such as NextMAP™ offer an efficient and accurate method for landform-mapping, whilst electrical resistivity tomography was able to map the major constituent sediments of the moraine, which had in turn been identified in the single exposure available. Additional geophysical techniques should however be applied to provide further structural data and thereby enable a more detailed interpretation of the moraine's internal structure. Preliminary findings indicate that the moraine is a glaciotectonic landform composed of diamicton and glaciofluvial sediments, an origin consistent with recent suggestions that the Cheshire Plain contained an active ice lobe during the last glacial maximum.  相似文献   
55.
A carbon‐rich melt fragment from the Gardnos impact structure has been studied for a better understanding of the preservation and structural form(s) of carbon that have been processed by impact melting. The carbon was analyzed in situ in its original petrographic context within the melt fragment, using high‐resolution techniques including focused ion beam‐transmission electron microscopy and electron energy loss spectroscopy. Results show that the carbon is largely uniform and has a nanocrystalline grain size. The Gardnos carbon has a graphitic structure but with a large c/a ratio indicating disorder. The disorder could be a result of rapid heating to high temperatures during impact, followed by rapid cooling, with not enough time to crystallize into highly ordered graphite. However, temperature distribution during impact is extremely heterogenous, and the disordered Gardnos carbon could also represent material that avoided extreme temperatures, and thus, it was preserved. Understanding the structure of carbon during terrestrial impacts is important to help determine if the history of carbon within extraterrestrial samples is impact related. Furthermore, the degree of preservation of carbon during impact is key for locating and detecting organic compounds in extraterrestrial samples. This example from Gardnos, together with previous studies, shows that not all carbon is lost to oxidation during impact but that impact melting can encapsulate and preserve carbon where it is available.  相似文献   
56.
Inversion modelling of marine gravity anomalies to derive predicted seafloor topography has provided significant advance in delineating deep-ocean bathymetry where the seafloor both conforms to the half-space cooling model of seafloor spreading, and largely sediment-free. Similar modelling for elevated ridges and seamounts, that are formed by processes other than seafloor spreading and/or have proximal sediment sources (e.g., continental margins and volcanic arcs), have significantly higher errors when validated against modern shipborne echo-sounding data. A three-dimensional, five-layer gravity model is emulated for the cases of both synthetic and real seamounts, with varying degrees of sediment burial, to establish the sensitivity of variable sediment cover as a source of error. A simple `Gaussian' seamount with base radius of 30 km, 2000 m of relief, has a maximum 140–160 mGal anomaly, that decreases to 50 mGal with the addition of 1 km of sediment cover with simple `flood' geometry. Complete burial, with a typical sediment density of 2300 kg m–3, results in a 120 mGal difference from a sediment-free seamount model. Increasing sediment density results in an exponential decay of the seamount anomaly. More complex synthetic geometries of varying basement relief and sediment thickness show that the anomaly amplitude remains significant, especially where the latter is >700–800 m thick. For the real case, seamounts of the Three Kings Ridge (northern New Zealand) imaged with seismic reflection data, with varying degrees of sediment cover of up to 1 km, when modelled both with and with-out the inclusion of a sediment layer, typically have rms differences of 30 mGal between observed and modelled gravity anomalies. Significantly, the rms errors are reduced by 50% with the inclusion of a sediment layer that corresponds to a reduction of predicted seafloor topography rms errors of 192–684 m to 78–360 m.  相似文献   
57.
Erosion of the southern Gold Coast beaches (SE Queensland, Australia) was exacerbated after the extension of the Tweed River training walls in the early 1960s. To achieve the objective of restoring and maintaining beach amenity, significant nourishment works have been undertaken in Coolangatta Bay over the past 30 years. Particularly, under the Tweed River Entrance Sand Bypassing Project (TRESBP) since 1995, a number of nourishment campaigns and the implementation of a permanent sand bypass system in 2001 have resulted in significant changes of Coolangatta Bay morphology. The present case study investigates the influence of both wave climate and nourishment works on the area extending from the updrift Snapper Rocks area to downdrift Kirra Beach. SWAN spectral wave model is implemented at Coolangatta Bay area and forced by the global wave model WW3 to estimate wave forcing and the potential natural longshore drift entering in Coolangatta. Specific transects extracted from accurate bathymetric surveys are used to investigate and quantify Coolangatta Bay sedimentation for the period 1987–2005. A network of Argus video stations provides high sample rate information on the shoreline evolution. Results show that, over the past 10 years, Coolangatta Bay has infilled rapidly. Sedimentation reached up to 6 m in some areas between 1995 and 2005, with beach width increasing by 200 m at Kirra Beach. Rapid seaward shoreline migration is consistent with the intense over-pumping of sand relative to the natural potential to move sand alongshore. The nourishment strategy used during this project has successfully delivered large amounts of sand to the southern Gold Coast embayment, although it has been up to now controversial from many community perspectives. The artificial sand bypassing process proved to be much more efficient than depositing the dredged sand in the nearshore area which requires a significant period of low energy condition in order for the deposited sediment to migrate shoreward and weld to the shore. This case study confirms that, when carefully undertaken, sand bypassing is a sustainable and flexible soft engineering approach which can work in concert with natural processes.  相似文献   
58.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
Increases in the frequency and magnitude of extreme water levels and storm surges are correlated with known indices of climatic variability (CV), including the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), along some areas of the British Columbia coast. Since a shift to a positive PDO regime in 1977, the effects of ENSO events have been more frequent, persistent, and intense. Teleconnected impacts include more frequent storms, higher surges, and enhanced coastal erosion. The response of oceanographic forcing mechanisms (i.e. tide, surge, wave height, wave period) to CV events and their role in coastal erosion remain unclear, particularly in western Canada. As a first step in exploring the interactions between ocean–atmosphere forcing and beach–dune responses, this paper assembles the historic erosive total water level (TWL) regime and explores relations with observed high magnitude storms that have occurred in the Tofino‐Ucluelet region (Wickaninnish Bay) on the west coast of Vancouver Island, British Columbia, Canada. Extreme events where TWL exceeded an erosional threshold (i.e. elevation of the beach–foredune junction) of 5·5 m aCD are examined to identify dominant forcing mechanisms and to classify a regime that describes erosive events driven principally by wave conditions (61·5%), followed by surge (21·8%), and tidal (16·7%) effects. Furthermore, teleconnections between regional CV phenomena, extreme storm events and, by association, coastal erosion, are explored. Despite regional sea level rise (eustatic and steric), rapid crustal uplift rates have resulted in a falling relative sea level and, in some sedimentary systems, shoreline progradation at rates approaching +1·5 m a–1 over recent decades. Foredune erosion occurs locally with a recurrence interval of approximately 1·53 years followed by rapid rebuilding due to high onshore sand supply and often in the presence of large woody debris and rapidly colonizing vegetation in the backshore. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
60.
Human exploration of the Moon and Mars: implications for Aurora   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号