首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85442篇
  免费   1258篇
  国内免费   614篇
测绘学   1908篇
大气科学   6191篇
地球物理   17472篇
地质学   29329篇
海洋学   7676篇
天文学   19233篇
综合类   174篇
自然地理   5331篇
  2021年   750篇
  2020年   847篇
  2019年   940篇
  2018年   1817篇
  2017年   1724篇
  2016年   2165篇
  2015年   1313篇
  2014年   2108篇
  2013年   4361篇
  2012年   2289篇
  2011年   3241篇
  2010年   2879篇
  2009年   3952篇
  2008年   3533篇
  2007年   3433篇
  2006年   3356篇
  2005年   2518篇
  2004年   2614篇
  2003年   2442篇
  2002年   2385篇
  2001年   2161篇
  2000年   2047篇
  1999年   1743篇
  1998年   1716篇
  1997年   1709篇
  1996年   1462篇
  1995年   1407篇
  1994年   1267篇
  1993年   1121篇
  1992年   1106篇
  1991年   941篇
  1990年   1164篇
  1989年   1002篇
  1988年   872篇
  1987年   1066篇
  1986年   955篇
  1985年   1182篇
  1984年   1341篇
  1983年   1279篇
  1982年   1164篇
  1981年   1115篇
  1980年   960篇
  1979年   960篇
  1978年   984篇
  1977年   899篇
  1976年   866篇
  1975年   796篇
  1974年   800篇
  1973年   826篇
  1972年   519篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
861.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   
862.
Acceleration of cosmic rays interacting with the anisotropic magnetohydrodynamic turbulent medium is studied. Particle acceleration is caused by a large-scale electric field arising in a turbulent medium due to the α-effect. A comparison is made of equilibrium spectra of cosmic rays, characteristic of the specific acceleration mechanism, with the energy distribution of particles corresponding to the statistical Fermi acceleration.  相似文献   
863.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   
864.
The roughness of a planetary surface offers clues to its past geologic history. We apply a surface roughness model developed by Buratti and Veverka (Buratti, B.J., Veverka, J. [1985]. Icarus 64, 320-328) to Cassini ISS data from the January 1st, 2005 flyby of Iapetus. This model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of idealized craters on the surface. Our findings indicate that the surface on the dark side is significantly smoother than the surfaces of other icy low-albedo saturnian satellites. We have found that the average depth to radius on the leading (dark) side is 0.084, corresponding to a Hapke mean slope angle of 6°. As compared to the 13-33° Hapke mean slope angle of other icy satellites (Buratti, B.J., and 10 colleagues [2008]. Icarus 193, 309-322), our results present a clearly different picture for the leading surface of Iapetus, suggesting that the dark deposit contributes to the decrease in macroscopic surface roughness of the leading side. Attempts were made to obtain an average depth to radius value for the trailing (bright) side; however the scans of the bright side from this flyby exhibited large variations in albedo, resulting in results that were physically unrealistic.  相似文献   
865.
Abstract– Although it has been suggested that the ungrouped carbonaceous chondrite Adelaide and the K chondrite Kakangari could be considered highly primitive, our study of their presolar grain abundances shows that both have experienced more secondary processing than other primitive chondrites with high presolar grain abundances. Presolar grains are rare in Kakangari and are present in reduced abundances in Adelaide (approximately 70 ppm for O‐anomalous grains). Thermal annealing has led to widespread crystallization of their fine‐grained matrices, and accounts for the partial to complete destruction of presolar grains. In addition, presolar silicates in Adelaide show elevated Fe abundances and Fe‐rich rims indicative of infiltration of Fe into the grains from the surrounding matrix. This process probably also took place during annealing, most likely in the solar nebula, in a region with an enhanced dust‐to‐gas ratio. The most primitive meteorites, with the highest presolar grain abundances, appear to be those whose matrices contain abundant amorphous material that has escaped any significant thermal or aqueous alteration.  相似文献   
866.
In a recent paper of M. Villata, it is claimed that “antigravity appears as a prediction of general relativity when CPT is applied.” However, the present paper argues that Villata puts the cart before the horse qua methodology, and that the resulting theory cannot be reconciled with the ontological presuppositions of general relativity. The conclusion is that Villata’s suggestion for the physics that might underlie a gravitational repulsion of matter and antimatter is not acceptable as a fundamental theory in its current state of development.  相似文献   
867.
An intensive survey has been conducted of the distributions of some chemical properties (dissolved oxygen, nutrients and carbonate properties) in the Kuroshio/Oyashio Interfrontal Zone. Many low-salinity water patches were found down to depths of 640 m. Each chemical property also showed anomalies in these patches, but the degree of variation showed a low correlation with salinity. This may be due to the high variability of biological processes in the surface waters where these patches are formed. Vertical profiles of the chemical properties were also observed along the Kuroshio extension axis from 140.50°E to 146.75°E. The concentrations of nutrients and total carbonate (TC) in the water having densities greater than σθ=26.60 can be regarded as being formed by the isopycnal mixing of the Kuroshio component water and Oyashio component water and biological degradation within the density surfaces. This implies that the transport of chemical properties by the diapycnal mixing is negligible in these density layers in the K/O zone.  相似文献   
868.
869.
870.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号