首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110669篇
  免费   1717篇
  国内免费   920篇
测绘学   2556篇
大气科学   7501篇
地球物理   22109篇
地质学   39860篇
海洋学   9741篇
天文学   24812篇
综合类   312篇
自然地理   6415篇
  2022年   672篇
  2021年   1186篇
  2020年   1278篇
  2019年   1420篇
  2018年   2938篇
  2017年   2784篇
  2016年   3337篇
  2015年   1896篇
  2014年   3260篇
  2013年   5768篇
  2012年   3488篇
  2011年   4699篇
  2010年   4099篇
  2009年   5308篇
  2008年   4782篇
  2007年   4777篇
  2006年   4426篇
  2005年   3308篇
  2004年   3237篇
  2003年   3157篇
  2002年   2928篇
  2001年   2666篇
  2000年   2463篇
  1999年   2044篇
  1998年   2111篇
  1997年   2043篇
  1996年   1716篇
  1995年   1695篇
  1994年   1506篇
  1993年   1332篇
  1992年   1261篇
  1991年   1215篇
  1990年   1303篇
  1989年   1157篇
  1988年   1041篇
  1987年   1235篇
  1986年   1110篇
  1985年   1374篇
  1984年   1493篇
  1983年   1415篇
  1982年   1340篇
  1981年   1189篇
  1980年   1122篇
  1979年   1061篇
  1978年   1019篇
  1977年   957篇
  1976年   908篇
  1975年   880篇
  1974年   866篇
  1973年   889篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
431.
The present work is a first comprehensive study of the trace-element composition and zoning in clinopyroxene- and amphibole-group minerals from carbonatites, incorporating samples from 14 localities worldwide (Afrikanda, Aley, Alnö, Blue River, Eden Lake, Huayangchuan, Murun, Oka, Ozernaya Varaka, Ozernyi, Paint Lake, Pinghe, Prairie Lake, Turiy Mys). The new electron-microprobe data presented here significantly extend the known compositional range of clinopyroxenes and amphiboles from carbonatites. These data confirm that calcic and sodic clinopyroxenes from carbonatites are not separated by a compositional gap, instead forming an arcuate trend from nearly pure diopside through intermediate aegirine–augite compositions confined to a limited range of CaFeSi2O6 contents (15–45 mol%) to aegirine with < 25 mol% of CaMgSi2O6 and a negligible proportion of CaFeSi2O6. A large set of LA-ICPMS data shows that the clinopyroxenes of different composition are characterized by relatively low levels of Cr, Co and Ni (≤ 40 ppm) and manifold variations in the concentration of trivalent lithophile and some incompatible elements (1–150 ppm Sc, 26–6870 ppm V, 5–550 ppm Sr, 90–2360 ppm Zr, and nil to 150 ppm REE), recorded in some cases within a single crystal. The relative contribution of clinopyroxenes to the whole-rock Rb, Nb, Ta, Th and U budget is negligible. The major-element compositional range of amphiboles spans from alkali- and Al-poor members (tremolite) to Na–Al-rich Mg- or, less commonly, Fe-dominant members (magnesiohastingsite, hastingsite and pargasite), to calcic–sodic, sodic and potassic–sodic compositions intermediate between magnesio-ferrikatophorite, richterite, magnesioriebeckite, ferri-nyböite and (potassic-)magnesio-arfvedsonite. In comparison with the clinopyroxenes, the amphiboles contain similar levels of tetravalent high-field-strength elements (Ti, Zr and Hf) and compatible transition elements (Cr, Co and Ni), but are capable of incorporating much higher concentrations of Sc and incompatible elements (up to 500 ppm Sc, 43 ppm Rb, 1470 ppm Sr, 1230 ppm Ba, 80 ppm Pb, 1070 ppm REE, 140 ppm Y, and 180 ppm Nb). In some carbonatites, amphiboles contribute as much as 25% of the Zr + Hf, 15% of the Sr and 35% of the Rb + Ba whole-rock budget. Both clinopyroxenes and amphiboles may also host a significant share (~ 10%) of the bulk heavy-REE content. Our trace-element data show that the partitioning of REE between clinopyroxene (and, in some samples, amphibole) and the melt is clearly bimodal and requires a revision of the existing models assuming single-site REE partitioning. Clinopyroxenes and amphiboles from carbonatites exhibit a diversity of zoning patterns that cannot be explained exclusively on the basis of crystal chemistry and relative compatibility of different trace-element in these minerals. Paragenetic analysis indicates that in most cases, the observed zoning patterns develop in response to removal of selected trace elements by phases co-precipitating with clinopyroxene and amphibole (especially magnetite, fluorapatite, phlogopite and pyrochlore). With the exception of magnesiohastingsite–richterite sample from Afrikanda, the invariability of trace-element ratios in the majority of zoned clinopyroxene and amphibole crystals implies that fluids are not involved in the development of zoning in these minerals. The implications of the new trace-element data for mineral exploration targeting REE, Nb and other types of carbonatite-hosted rare-metal mineralization are discussed.  相似文献   
432.
The Mechanical Coupling of Fluid-Filled Granular Material Under Shear   总被引:1,自引:0,他引:1  
The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems, for example saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and, as a result, catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grain–fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that must be addressed include: what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow has been developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys viscoelastic rheology in response to pore space variations. Under undrained conditions elastic-like behavior dominates and leads to a linear relationship between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well-drained conditions and leads to a linear relationship between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive phases that punctuate the overall dilative trend. In addition, the previously recognized generation of elevated pore pressure under undrained compactive conditions is observed. Simulations also show that during liquefaction events stress chains are detached, the external load becomes completely supported by the pressurized pore fluid, and shear resistance vanishes.  相似文献   
433.
434.
In order to check the premature siltation of the reservoirs and guard against the drop in the irrigation potential, the Government of India has launched the schemes of soil conservation and integrated watershed management in the catchments of RVPs and Flood Prone rivers. Owing to the large financial and manpower commitments needed to implement and execute soil conservation measures over vast catchment areas, a priority approach for treatment was identified. The methodology developed for prioritization of watersheds of a catchment area conceptualizes sedimentation of the reservoirs as a multiplicative function of erosivity value and the delivery ratio. This paper deals with the development of a computerized data base software module ‘WEIGHT’ for determination of erosivity values for the mapping units comprising assemblages of the varying combinations of climate, physiography and slope, land use and cover conditions, soil characteristics (texture, solumn thickness, permeability and pH) and the existing erosion and soil conservation measures. The WEIGHT software package is coded in FORTRON-4 for PDP 11/83 operating system. the data base comprises storage of the attributes of the different erosivity determinants of the mapping units with predetermined erosivity values sequentially on a disk and comparing the attributes of a new mapping unit to get the most probabilities erosivity value. The objective has been to eliminate the personal bias and bring about the objectivity in the process of assigning erosivity values to the different mapping units. The data base design, design logic and operational sequence of the data base are discussed in the paper.  相似文献   
435.
Gold deposits and occurrences small in reserves and high in Au grade conventionally determine the line of prospecting in terrigenous sequences of the Verkhoyansk–Kolyma region. In this paper, the geological structure of such gold objects is considered with the example of the deposits and prospects making up the Zhdaninsky ore–placer cluster in the Republic of Sakha (Yakuia). From lithological, structural, and mineralogical–geochemical data, the formation conditions of ore-bearing complexes are specified, the geological evolution history of the northern Ol’chan Zone of the Kular–Nera Belt is reconstructed, and the zonal distribution of mineralization within the ore–placer cluster is revealed. The structural–compositional complexes were formed in the following succession: (1) sedimentation at the shelf of the passive margin accompanied by synsedimentation deformations; (2) metagenesis of sediments and the development of bedding-plane intraformational detachments of collision stage D1 under conditions of tangential compression and accompanied by the formation of carbon dioxide–aqueous metamorphic fluid at a temperature of 300°C and under a pressure of 1.4 kbar; (3) folding and faulting of orogenic stage D2 with the formation of synkinematic magmatic bodies, metasomatic alteration, and Au-bearig mineral assemblages. Small Au-bearing objects with veined mineralization and high Au grade are localized in structures of stage D2 transverse to bedding-plane schistosity S1. They form at the collision stage above intraformational detachment surfaces and are controlled by shear structures of the orogenic stage with misalignment of these deformations. The ore zoning is determined by the distribution of Co and Ni minerals and by variations in the anionic composition of ore (S, As, Sb).  相似文献   
436.
With recent research indicating the importance of the rolling mechanism of deformation in granular systems consisting of perfectly round particles, it has become popular to use ellipse-shaped particles in the Discrete Element Method (DEM) numerical model. Inherent in this technique is the need for accurately computing ellipse to ellipse intersection, in order to properly detect contact formation and compute relative contact velocities. However, the commonly used algorithms for computing ellipse-ellipse intersection are generally poorly conditioned and can be inaccurate. An alternate method for computing ellipse-ellipse intersection is developed and presented which results in a well-conditioned, stable and accurate contact detection method. These modification are incorporated into the general DEM algorithm.  相似文献   
437.
438.
The addition of Fe and Cr to the simple system MgO-SiO2-Al2O3 markedly affects the activities of phases involved in the equilibrium
\textMg\text2 \textSiO\text4 \text + MgAl\text2 \textSiO\text6 \text = MgAl\text2 \textO\text4 \text + Mg\text2 \textSi\text2 \textO\text6 \textOlivine + Opx\textsolid solution \text = Spinel + Opx\textsolid solution \begin{gathered} {\text{Mg}}_{\text{2}} {\text{SiO}}_{\text{4}} {\text{ + MgAl}}_{\text{2}} {\text{SiO}}_{\text{6}} {\text{ = MgAl}}_{\text{2}} {\text{O}}_{\text{4}} {\text{ + Mg}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} \hfill \\ {\text{Olivine + Opx}}_{{\text{solid solution}}} {\text{ = Spinel + Opx}}_{{\text{solid solution}}} \hfill \\ \end{gathered}  相似文献   
439.
The composition and nature of high-Cr minerals in lithic clasts from the carbonatites of the Veseloe occurrence, northern Transbaikalia, were considered. In order to determine their source, the Cr-bearing phases were compared with chromite, magnetite, and rutile from ultrabasic rocks, mantle xenoliths, and eclogites. It was suggested that the xenoclasts studied were formed at great depths, whereas the carbonatites were directly derived from the mantle rather than formed by the crustal differentiation of a silicate-carbonate melt.  相似文献   
440.
Room temperature X-irradiation of some natural beryls produced several new absorption lines in the electron paramagnetic resonance (EPR) spectrum, a known series of optical absorption lines in the 500–700 nm range, and a shift of the absorption edge to lower energies. Several of the new EPR lines and part of the irradiation-induced shift of the absorption edge disappeared after a few days at room temperature, and were not examined in detail. However, three of the paramagnetic centres responsible for the new EPR lines were stable at room temperature and two of these have previously been identified as atomic hydrogen and the methyl radical, CH3. These species were stable to ~150 and ~450°C respectively. The third stable species, hitherto unreported, showed a single-line EPR spectrum of axial symmetry, with g∥=2.0051 and g⊥=2.0152. This spectrum was found to be intensity-correlated with the series of optical bands in the 500–700 nm range, after thermal bleaching at 175°C. The EPR and optical spectra are therefore assigned to the same species. It is argued that this species is the CO 3 ? molecular ion, located in the widest part of the structural channel and aligned with the plane of the molecule perpendicular to the c axis. The EPR spectrum is consistent with a 2 A2 ground state of a CO 3 ? molecule with trigonal symmetry, and this requires that the optical transition has a 2 A22 E′ character. Most of the features in the optical spectrum can be assigned to coupling of a totally symmetric mode of frequency ~1020 cm?1 onto a zero-phonon line at 14,490 cm?1 and a second weaker line at 16,020 cm?1. However, both of these two fundamental lines are structured, and the two components show strong temperature-dependent derivative-shaped magnetic circular dichroism (MCD). Furthermore, the overall sign of the MCD for the line at 16,020 cm?1 is opposite to that at 14,490 cm?1. The separation (~120 cm?1) of the two components of the 14,490 cm?1 line is much larger than that expected from spin-orbit interaction, and the origin of this splitting is not yet understood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号