首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65511篇
  免费   505篇
  国内免费   370篇
测绘学   1605篇
大气科学   3716篇
地球物理   11893篇
地质学   26873篇
海洋学   5467篇
天文学   14319篇
综合类   269篇
自然地理   2244篇
  2022年   576篇
  2021年   853篇
  2020年   897篇
  2019年   1006篇
  2018年   4097篇
  2017年   3646篇
  2016年   3123篇
  2015年   940篇
  2014年   1854篇
  2013年   2795篇
  2012年   2738篇
  2011年   4281篇
  2010年   3794篇
  2009年   4305篇
  2008年   3620篇
  2007年   4258篇
  2006年   2344篇
  2005年   1508篇
  2004年   1442篇
  2003年   1477篇
  2002年   1371篇
  2001年   1155篇
  2000年   975篇
  1999年   693篇
  1998年   704篇
  1997年   735篇
  1996年   548篇
  1995年   572篇
  1994年   535篇
  1993年   433篇
  1992年   448篇
  1991年   428篇
  1990年   477篇
  1989年   421篇
  1988年   388篇
  1987年   409篇
  1986年   336篇
  1985年   463篇
  1984年   468篇
  1983年   453篇
  1982年   432篇
  1981年   400篇
  1980年   412篇
  1979年   347篇
  1978年   378篇
  1977年   320篇
  1976年   291篇
  1975年   293篇
  1974年   274篇
  1973年   344篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
202.
203.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   
204.
Túnyi  I.  Guba  P.  Roth  L. E.  Timko  M. 《Earth, Moon, and Planets》2003,93(1):65-74
Lightning discharge generated in the protoplanetary nebula is viewed as a temporally isolated surge in the flow of electrically charged particles, similar to that of terrestrial lightning. If the current is intense enough, a powerful circular impulse magnetic field is generated around the instantaneous virtual electric conductor. Such magnetic field is capable of magnetizing dust grains containing ferromagnetic components present in its vicinity to their saturation levels. As a result, dust grains attract one another, forming the aggregates. This magnetically driven attraction suggests an important process possibly operational at an early stage of the planetary accretion. Based on both a classical model for electric conductor, and the theory of Lienard–Wiechert electromagnetic potentials, our calculations show that the magnetic impulse due to a discharge channel of a few cm in diameter transferring a charge of about 104 electrons reaches as high as 10 T. At these magnetic fields, the ferromagnetic dust grains, and possibly the already-formed larger aggregates as well, are easily magnetized to the saturation levels, producing compact clusters exhibiting permanent magnetic moments.  相似文献   
205.
206.
This paper features the structural evolution of the eastern margin of Eurasia in Late Mesozoic and Cenozoic.It is characterized by three stages of development: the riftogenic stage (Jurassic-Early Cretaceous), the platform stage (Late Cretaceous) and the neotectonic one (Paleogene-Quarternary). The boundaries between these stages are distinctly fixed by the geological time limits of planetary range. It is demonstrated that the riftogenic and neotectonic stages were characterized by a high degree of geodynamic activity, and the platform one by a decrease in contrast of tectonic movements. The main river net was formed in the Early Cretaceous and in the Neogene. It experienced a serious reconstruction accompanied by the formation of the Amur River valley being similar to the modem one.  相似文献   
207.
We present the results of our analysis of the RXTE observations for two transient sources, IGR J17091-3624 and IGR J18539+0727, in April 2003. The derived energy spectra of the sources and the power-density spectra of their light curves make it possible to classify them as low/hard-state X-ray binaries. The parameters of the power spectrum for IGR J18539+0727 lead us to tentatively conclude that the compact object in this binary is a black hole.  相似文献   
208.
In this paper we show that a change in the signs of some of the metric components of the solution of the field equations for the classical cosmic string results in a solution which we interpret as a time-dependent wall composed of tachyons. We show that the walls have the property of focusing the paths of particles which pass through them. As an illustration of this focusing, we demonstrate the results of a simple simulation of the interaction between one such tachyon wall and a rotating disk of point masses. This interaction leads to the temporary formation of spiral structures. These spiral structures exist for a time on the order of one galactic rotation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
209.
Dark energy has a dramatic effect on the dynamics of the Universe, causing the recently discovered acceleration of the expansion. The dynamics are also central to the behaviour of the growth of large-scale structure, offering the possibility that observations of structure formation provide a sensitive probe of the cosmology and dark energy characteristics. In particular, dark energy with a time-varying equation of state can have an influence on structure formation stretching back well into the matter-dominated epoch. We analyse this impact, first calculating the linear perturbation results, including those for weak gravitational lensing. These dynamical models possess definite observable differences from constant equation of state models. Then we present a large-scale numerical simulation of structure formation, including the largest volume to date involving a time-varying equation of state. We find the halo mass function is well described by the Jenkins et al. mass function formula. We also show how to interpret modifications of the Friedmann equation in terms of a time-variable equation of state. The results presented here provide steps toward realistic computation of the effect of dark energy in cosmological probes involving large-scale structure, such as cluster counts, the Sunyaev–Zel'dovich effect or weak gravitational lensing.  相似文献   
210.
Litvinenko  Yuri E.  Craig  I.J.D. 《Solar physics》2003,218(1-2):173-181
Flux pile-up magnetic reconnection is traditionally considered only for incompressible plasmas. The question addressed in this paper is whether the pile-up scalings with resistivity are robust when plasma compressibility is taken into account. A simple analytical argument makes it possible to understand why the transition from a highly compressible limit to the incompressible one is difficult to discern in typical simulations spanning a few decades in resistivity. From a practical standpoint, however, flux pile-up reconnection in a compressible plasma can lead to anomalous electric resistivity in the current sheet and flare-like energy release of magnetic energy in the solar corona.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号