首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79906篇
  免费   956篇
  国内免费   483篇
测绘学   2136篇
大气科学   5121篇
地球物理   15125篇
地质学   31225篇
海洋学   6457篇
天文学   17554篇
综合类   276篇
自然地理   3451篇
  2022年   439篇
  2021年   748篇
  2020年   768篇
  2019年   829篇
  2018年   4091篇
  2017年   3761篇
  2016年   3148篇
  2015年   1154篇
  2014年   1859篇
  2013年   3318篇
  2012年   2911篇
  2011年   4707篇
  2010年   4201篇
  2009年   5003篇
  2008年   4117篇
  2007年   4668篇
  2006年   2570篇
  2005年   2058篇
  2004年   1973篇
  2003年   1962篇
  2002年   1815篇
  2001年   1452篇
  2000年   1328篇
  1999年   1100篇
  1998年   1126篇
  1997年   1076篇
  1996年   910篇
  1995年   923篇
  1994年   828篇
  1993年   696篇
  1992年   682篇
  1991年   668篇
  1990年   757篇
  1989年   653篇
  1988年   598篇
  1987年   743篇
  1986年   627篇
  1985年   791篇
  1984年   859篇
  1983年   833篇
  1982年   745篇
  1981年   757篇
  1980年   655篇
  1979年   633篇
  1978年   619篇
  1977年   549篇
  1976年   537篇
  1975年   529篇
  1974年   503篇
  1973年   568篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
891.
The spatial and temporal dynamics of dissolved inorganic nitrogen, dissolved phosphate, dissolved silica and chlorophyll a were measured seasonally at eight stations in the Ria de Aveiro. Between December 2000 and September 2001, the seasonal succession of phytoplankton assemblages, inferred after the spatial and seasonal variation of silica and of chlorophyll a concentrations, showed that diatoms (μmol Si L−1) dominated from late autumn until early spring, while chlorophytes (μg Chl a L−1) bloomed during late spring and summer. The Si:N:P ratios and Si concentrations indicated no seasonal depletion in dissolved silica, as in other temperate systems, possibly because of abnormal precipitation and flood events prolonging the supply of dissolved Si to the system. The Si:N:P ratios suggested P limitation at the system level. Despite the relative proportions of available nutrients, the mean phosphorus concentration (5.3 μmol L−1) was above the reported half-saturation constants for P uptake by phytoplankton. Thus, in Ria de Aveiro, the seasonal succession of phytoplankton assemblages may also be dependent on the grazing capacity of the pelagic community through top-down regulation.  相似文献   
892.
Among the assumptions upon which linear time-invariant models of floating bodies are based is that the body motions are so small that any change in the body’s angular position can be disregarded. However, it is often a major design requirement of a wave energy conversion device that the response amplitude is large, thereby invalidating one of the assumptions of the linear model. In particular, the immersed geometry of a body undergoes considerable variation when it is moved in pitch. With regard to this we investigate the difference in performance between a quasi-linear model in which the change of immersed surface is modelled by time-varying parameters and a basic linear model in which the immersed surface is time-invariant. The time-varying parameter model is realized by interpolation between the appropriate parameter values of a set of linear time-invariant (LTI) models derived for the different immersed surfaces that occur at discrete body displacements. It is shown that the responses predicted using the time-varying parameter model are closer to those measured experimentally than those of a standard frequency-domain model. Particular improvement occurs when the responses are large, such as at or near the resonance frequency. A problem which may limit the general use of the model is also discussed.  相似文献   
893.
894.
Morphodynamic modeling is employed in the present work to predict the long-term evolution (over the next 100 years) of typical sedimentary coasts in the western Russian Arctic. The studied objects are the coasts of Varandey (the Barents Sea), Baydaratskaya Bay and Harasavey (the Kara Sea). The model developed takes into account both the short-term processes (storm events) and long-term factors (for example, changes in sea level, inter-annual variations in gross sediment flux, lack or excess of sediment supply). Predicted and observed morphological changes in coastal profiles are shown to agree well for time scales ranging from weeks to decades. It is revealed that under given environmental conditions, the morphological evolution is strongly influenced by storm surges and associated wind-driven circulation. The water level gradient created by a surge generates a seaward flow at the bed. This outflow is shown to be an important destructive mechanism contributing to the erosion and recession of Arctic coasts. The rate of change is found to depend on both the exposure of the coast (relative to the direction of dominant winds) and its height above the sea. The open coast of Varandey is expected to retreat as much as 300–500 m over 100 years, while recession of the less exposed coasts of Baydaratskaya Bay would not exceed about 100 m/century. If long-term sediment losses are insignificant, the rate of erosion decays with time and the morphodynamic system may tend toward equilibrium. It is concluded that the expected relative sea-level rise (up to 1 m over the nearest 100 years) is non-crucial to the future coastal evolution if an erosion activity is already high enough.  相似文献   
895.
The analytical method developed by Svendsen (1968) for a forced heave motion is extended to the general problem of wave induced heave, roll and sway motions of a long ship at a depth of water which is only slightly larger than the draught of the ship. This corresponds, for example, to the situation of a fully loaded ship in a harbour area.After linearization of the problem, the water motion is considered for each of the three individual motions and for the wave reflection-transmission problem for a fixed ship. The ensuing results for the forces on the ship are then synthesized to form the equations of motion, which are presented with all coefficients given, including mooring forces.Analytical and numerical results are given for the three components of motion, for the associated resonance frequencies, and for the hydrodynamic masses and moments of inertia. Finally, the assumptions used are analyzed and evaluated by comparison with measurements and with other results for a special case.  相似文献   
896.
897.
898.
1Introduction ThemajorityofAustralia’sabalonefisheryex ports(5.135kt,worth$216millionin2002~2003,ABARE2004)consistofblacklipabalone(HaliotisrubraLeach,1814).AssuchH.rubrais consideredasanimportantmarineresourcewithin Australia.Likemanyabalonespecieswor…  相似文献   
899.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号