Identification of the distinctive circulation patterns of storminess on the Atlantic margin of Europe forms the main objective of this study; dealing with storm frequency, intensity and tracking. The climatology of the extratropical cyclones that affect this region has been examined for the period 1940–1998. Coastal meteorological data from Ireland to Spain have been linked to the cyclone history for the North Atlantic in the analysis of storm records for European coasts. The study examines the evolution in the occurrence of storms since the 1940s and also their relationship with the North Atlantic Oscillation (NAO). Results indicate a seasonal shift in the wind climate, with regionally more severe winters and calmer summers established. This pattern appears to be linked to a northward displacement in the main North Atlantic cyclone track.
An experiment with the ECHAM4 A-GCM at high resolution (T106) has also been used to model the effect of a greenhouse gases induced warming climate on the climatology of coastal storms in the region. The experiment consists of (1), a 30-year control time-slice representing present-day equivalent CO2 concentrations and (2), a 30-year perturbed period corresponding to a time when the radiative forcing has doubled in terms of equivalent CO2 concentrations. The boundary conditions have been obtained from an atmosphere-ocean coupled OA-GCM simulation at low horizontal resolution. An algorithm was developed to allow the identification of individual cyclone movements in selected coastal zones. For most of the northern part of the study region, covering Ireland and Scotland, results describe the establishment by ca. 2060 of a tendency for fewer but more intense storms.
The impacts of these changes in storminess for the vulnerability of European Atlantic coasts are considered. For low-lying, exposed and ‘soft’ sedimentary coasts, as in Ireland, these changes in storminess are likely to result in significant localised increases in coastal erosion. 相似文献
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species. 相似文献
Benthic oxygen uptake, sulphate reduction and benthic bacterial production were measured at two contrasting locations in the southern North Sea: the shallow and turbulent Broad Fourteens area in the Southern Bight, and the deeper Oyster Grounds, a deposition area, where thermohaline stratification occurs during summer. Oxygen uptake and sulphate reduction showed a clear seasonal pattern in the Broad Fourteens area, indicating a supply of carbon to the benthic system that is closely related to the standing stock of carbon in the water column. This close benthic-pelagic coupling is probably due to the influence of the tide in this part of the North Sea, which keeps the water column permanently mixed. At the Oyster Grounds, no seasonal pattern was observed. Peaks in oxygen uptake and sulphate reduction were found in winter. Irregularly occurring events, such as storms and fishery-related activities, are likely to affect the benthic mineralization patterns in this area. Annual benthic carbon mineralization rates estimated from oxygen uptake rates were 44 gC·m−2 at the Broad Fourteens, and 131 gC·m−2 at the Oyster Grounds, of which 26 and 28%, respectively, could be attributed to sulphate reduction (assuming an annual sulphide reoxidation rate of 100%). Although sulphate reduction rates in the southern North Sea are higher than previously suggested, aerobic respiration is the most important pathway for benthic carbon mineralization at the stations visited. Production rates of benthic bacterial carbon measured with labelled leucine were much higher than carbon mineralization rates based on oxygen uptake or sulphate reduction. This may either imply a very high bacterial carbon conversion efficiency, or point to shortcomings in the accuracy of the techniques. A critical evaluation of the techniques is recommended. 相似文献
Sand waves are large bed waves on the seabed, being a few metres high and lying hundreds of metres apart. In some cases, these sand waves occur in navigation channels. If these sand waves reduce the water depth to an unacceptable level and hinder navigation, they need to be dredged. It has been observed in the Bisanseto Channel in Japan that the sand waves tend to regain their shape after dredging. In this paper, we address modelling of this regeneration of sand waves, aiming to predict this process. For this purpose, we combine a very simple, yet effective, amplitude-evolution model based on the Landau equation, with measurements in the Bisanseto Channel. The model parameters are tuned to the measured data using a genetic algorithm, a stochastic optimization routine. The results are good. The tuned model accurately reproduces the measured growth of the sand waves. The differences between the measured weave heights and the model results are smaller than the measurement noise. Furthermore, the resulting parameters are surprisingly consistent, given the large variations in the sediment characteristics, the water depth and the flow field. This approach was tested on its predictive capacity using a synthetic test case. The model was tuned based on constructed predredging data and the amplitude evolution as measured for over 2 years. After tuning, the predictions were accurate for about 10 years. Thus, it is shown that the approach could be a useful tool in the optimization of dredging strategies in case of dredging of sand waves. 相似文献
Sixteen kimberlite boulders were collected from three sites on the Munro and Misema River Eskers in the Kirkland Lake kimberlite field and one site on the Sharp Lake esker in the Lake Timiskaming kimberlite field. The boulders were processed for heavy-mineral concentrates from which grains of Mg-ilmenite, chromite, garnet, clinopyroxene and olivine were picked, counted and analyzed by electron microprobe. Based on relative abundances and composition of these mineral phases, the boulders could be assigned to six mineralogically different groups, five for the Kirkland Lake area and one for the Lake Timiskaming area. Their indicator mineral composition and abundances are compared to existing data for known kimberlites in both the Kirkland Lake and Lake Timiskaming areas. Six boulders from the Munro Esker form a compositionally homogeneous group (I) in which the Mg-ilmenite population is very similar to that of the A1 kimberlite, located 7–12 km N (up-ice), directly adjacent to the Munro esker in the Kirkland Lake kimberlite field. U–Pb perovskite ages of three of the group I boulders overlap with that of the A1 kimberlite. Three other boulders recovered from the same localities in the Munro Esker also show some broad similarities in Mg-ilmenite composition and age to the A1 kimberlite. However, they are sufficiently different in mineral abundances and composition from each other and from the A1 kimberlite to assign them to different groups (II–IV). Their sources could be different phases of the same kimberlite or—more likely—three different, hitherto unknown kimberlites up-ice of the sample localities along the Munro Esker in the Kirkland Lake kimberlite field. A single boulder from the Misema River esker, Kirkland Lake, has mineral compositions that do not match any of the known kimberlites from the Kirkland Lake field. This suggests another unknown kimberlite exists in the area up-ice of the Larder Lake pit along the Misema River esker. Six boulders from the Sharp Lake esker, within the Lake Timiskaming field, form a homogeneous group with distinct mineral compositions unmatched by any of the known kimberlites in the Lake Timiskaming field. U–Pb perovskite age determinations on two of these boulders support this notion. These boulders are likely derived from an unknown kimberlite source up-ice from the Seed kimberlite, 4 km NW of the Sharp Lake pit, since indicator minerals with identical compositions to those of the Sharp Lake boulders have been found in till samples collected down-ice from Seed. Based on abundance and composition of indicator minerals, most importantly Mg-ilmenite, and supported by U–Pb age dating of perovskite, we conclude that the sources of 10 of the 16 boulders must be several hitherto unknown kimberlite bodies in the Kirkland Lake and Lake Timiskaming kimberlite fields. 相似文献
Most Archaean gold ores belong to a coherent genetic group of structurally controlled lode-deposits that are characteristically
enriched in Au with variable enrichments in Ag, As, W, Sb, Bi, Te, B and Pb, but rarely Cu or Zn, and are surrounded by wallrock
alteration haloes enriched in K, LILE and CO2, with variable Na and/or Ca addition. Evidence from the Yilgarn Block of Western Australia, combined with similar evidence
from Canada and elsewhere, indicates that such deposits represent a crustal continuum that formed under a variety of crustal
régimes over at least a 15 km crustal profile at PT conditions ranging from 180°C at <1 kb to 700°C at 5 kb. Individual deposits,
separated by tens to hundreds of kilometres, collectively show transitional variations in structural style of mineralisation,
vein textures, and mineralogy of wallrock alteration that relate to the PT conditions of their formation at varying crustal
depths. Specific transitions within the total spectrum may be shown also by deposits within gold camps, although nowhere is
the entire continuum of deposits recorded from a single gold camp or even greenstone belt.
Recognition of the crustal continuum of deposits implicates the existence of giant late-Archaean hydrothermal systems with
a deep source for the primary ore fluid. A number of deep fluid and solute reservoirs are possible, including the basal segments
of greenstone belts, deep-level intrusive granitoids, mid-to lower-crustal granitoidgneisses, mantle lithosphere, or even
subducted oceanic lithosphere, given the probable convergent-margin setting of the host greenstone terranes. Individual stable
and radiogenic isotope ratios of fluid and solute components implicate fluid evolution from, or equilibrium with, a number
of these reservoirs, stressing the potential complexity of pathways for fluid advection to depositional sites. Lead and strontium
isotope ratios of ore-associated minerals provide the most persuasive evidence for fluid advection through deep-level intrusive
granitoids or granitoid-gneiss crust, whereas preliminary oxygen isotope data show that mixing of deeply sourced fluid and
surface waters only occurred at the highest crustal levels recorded by the lode gold deposits. 相似文献
Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand
how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity
at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles,
exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles
in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations
of vesicle size distributions and demonstrate that this type of vesicle invariably forms in magmas with vesicularities > 0.30
(and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface
and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems. 相似文献