首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49158篇
  免费   696篇
  国内免费   342篇
测绘学   1056篇
大气科学   3271篇
地球物理   9516篇
地质学   18511篇
海洋学   4489篇
天文学   10778篇
综合类   104篇
自然地理   2471篇
  2022年   377篇
  2021年   628篇
  2020年   628篇
  2019年   690篇
  2018年   1510篇
  2017年   1447篇
  2016年   1577篇
  2015年   777篇
  2014年   1453篇
  2013年   2662篇
  2012年   1674篇
  2011年   2138篇
  2010年   1938篇
  2009年   2403篇
  2008年   2069篇
  2007年   2189篇
  2006年   2062篇
  2005年   1330篇
  2004年   1290篇
  2003年   1240篇
  2002年   1256篇
  2001年   1155篇
  2000年   1055篇
  1999年   837篇
  1998年   793篇
  1997年   884篇
  1996年   683篇
  1995年   712篇
  1994年   672篇
  1993年   541篇
  1992年   562篇
  1991年   521篇
  1990年   554篇
  1989年   510篇
  1988年   486篇
  1987年   521篇
  1986年   477篇
  1985年   611篇
  1984年   588篇
  1983年   622篇
  1982年   581篇
  1981年   526篇
  1980年   545篇
  1979年   485篇
  1978年   442篇
  1977年   415篇
  1976年   391篇
  1975年   384篇
  1974年   378篇
  1973年   395篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
371.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   
372.
373.
146Sm–142Nd and 147Sm–143Nd systematics were investigated in garnet inclusions in diamonds from Finsch (S. Africa) and Hadean zircons from Jack Hills (W. Australia) to assess the potential of these systems as recorders of early Earth evolution. The study of Finsch inclusions was conducted on a composite sample of 50 peridotitic pyropes with a Nd model age of 3.3 Ga. Analysis of the Jack Hills zircons was performed on 790 grains with ion microprobe 207Pb/206Pb spot ages from 3.95 to 4.19 Ga. Finsch pyropes yield 100 × ?142Nd = ? 6 ± 12 ppm, ?143Nd = ? 32.5, and 147Sm/144Nd = 0.1150. These results do not confirm previous claims for a 30 ppm 142Nd excess in South African cratonic mantle. The lack of a 142Nd anomaly in these inclusions suggests that isotopic heterogeneities created by early mantle differentiation were remixed at a very fine scale prior to isolation of the South African lithosphere. Alternatively, this result may indicate that only a fraction of the mantle experienced depletion during the first 400 Myr of its history. Analysis of the Jack Hills zircon composite yielded 100 × ?142Nd = 8 ± 10 ppm, ?143Nd = 45 ± 1, and 147Sm/144Nd = 0.5891. Back-calculation of this present-day ?143Nd yields an unrealistic estimate for the initial ?143Nd of ? 160 ?-units, clearly indicating post-crystallization disturbance of the 147Sm–143Nd system. Examination of 146,147Sm–142,143Nd data reveals that the Nd budget of the Jack Hills sample is dominated by non-radiogenic Nd, possibly contained in recrystallized zircon rims or secondary subsurface minerals. This secondary material is characterized by highly discordant U–Pb ages. Although the mass fraction of altered zircon is unlikely to exceed 5–10% of total sample, its high LREE content precludes a reliable evaluation of 146Sm–142Nd systematics in Jack Hills zircons.  相似文献   
374.
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
375.
In situ oxygen isotopic measurements of primary and secondary minerals in Type C CAIs from the Allende CV3 chondrite reveal that the pattern of relative enrichments and depletions of 16O in the primary minerals within each individual CAI are similar to the patterns observed in Types A and B CAIs from the same meteorite. Spinel is consistently the most 16O-rich (Δ17O = −25‰ to −15‰), followed by Al,Ti-dioside (Δ17O = −20‰ to −5‰) and anorthite (Δ17O = −15‰ to 0‰). Melilite is the most 16O-depleted primary mineral (Δ17O = −5‰ to −3‰). We conclude that the original melting event that formed Type C CAIs occurred in a 16O-rich (Δ17O  −20‰) nebular gas and they subsequently experienced oxygen isotopic exchange in a 16O-poor reservoir. At least three of these (ABC, TS26F1 and 93) experienced remelting at the time and place where chondrules were forming, trapping and partially assimilating 16O-poor chondrule fragments. The observation that the pyroxene is 16O-rich relative to the feldspar, even though the feldspar preceded it in the igneous crystallization sequence, disproves the class of CAI isotopic exchange models in which partial melting of a 16O-rich solid in a 16O-poor gas is followed by slow crystallization in that gas. For the typical (not associated with chondrule materials) Type C CAIs as well for as the Types A and B CAIs, the exchange that produced internal isotopic heterogeneity within each CAI must have occurred largely in the solid state. The secondary phases grossular, monticellite and forsterite commonly have similar oxygen isotopic compositions to the melilite and anorthite they replace, but in one case (CAI 160) grossular is 16O-enriched (Δ17O = −10‰ to −6‰) relative to melilite (Δ17O = −5‰ to −3‰), meaning that the melilite and anorthite must have exchanged its oxygen subsequent to secondary alteration. This isotopic exchange in melilite and anorthite likely occurred on the CV parent asteroid, possibly during fluid-assisted thermal metamorphism.  相似文献   
376.
The current study provides an investigation of abiotic reduction of an oversaturated uranyl solution driven by iron nanoparticle oxidation. The reactivity of nano-scale zero-valent iron (ZVI) under mildly oxic conditions (1.2% O2 and 0.0017% CO2) was studied in 1000 ppm uranyl solution in the pH range 3-7, at reaction times from 10 min to 4 h. Reductive precipitation of UO2 was observed as the main process responsible for the removal of uranium from solution with the kinetics of reaction becoming increasingly favourable at higher pH. Despite working with an oversaturated uranium solution, the precipitation of UO2 occurred in preference to precipitation of UO3·2H2O (metaschoepite) at reaction times between 1 and 4 h and for uranyl solutions initially set up at pH ?5. Characterisation of both solid and solution phases was performed using X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) imaging, X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES).  相似文献   
377.
We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 °C/Myr at the low-Ni end of the group to 100 °C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform cooling rate. Thermal and fractional crystallization models have been used to describe the cooling and solidification of the IVA asteroid. The thermal model indicates that a metallic body of 150 ± 50 km in radius with less than 1 km of silicate on the outside of the body has a range of cooling rates that match the metallographic cooling rates in IVA irons in the temperature range 700-400 °C where the Widmanstätten pattern formed. The fractional crystallization model for Ni with initial S contents between 3 and 9 wt% is consistent with the measured variation of cooling rate with bulk Ni and the thermal model. New models for impacts in the early solar system and the evolution of the primordial asteroid belt allow us to propose that the IVA irons crystallized and cooled in a metallic body that was derived from a differentiated protoplanet during a grazing impact. Other large magmatic iron groups, IIAB, IIIAB, and IVB, also show significant cooling rate ranges and are very likely to share a similar history.  相似文献   
378.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
379.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   
380.
We have collected ∼500 stream waters and associated bed-load sediments over an ∼400 km2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into “dissolved” (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm]NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce]NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu]NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm]NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb]NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce]NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu]NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm]NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb]NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced.The partial extraction recovered, on average ∼20% of the Fe in the total sediment, ∼80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号