首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79105篇
  免费   1429篇
  国内免费   1942篇
测绘学   2627篇
大气科学   5705篇
地球物理   15572篇
地质学   31849篇
海洋学   6162篇
天文学   13916篇
综合类   2386篇
自然地理   4259篇
  2022年   493篇
  2021年   789篇
  2020年   761篇
  2019年   854篇
  2018年   6227篇
  2017年   5422篇
  2016年   4197篇
  2015年   1224篇
  2014年   1716篇
  2013年   2951篇
  2012年   2993篇
  2011年   5219篇
  2010年   4278篇
  2009年   5166篇
  2008年   4314篇
  2007年   4932篇
  2006年   2624篇
  2005年   1875篇
  2004年   1975篇
  2003年   1862篇
  2002年   1698篇
  2001年   1324篇
  2000年   1216篇
  1999年   955篇
  1998年   1004篇
  1997年   952篇
  1996年   803篇
  1995年   783篇
  1994年   682篇
  1993年   575篇
  1992年   606篇
  1991年   543篇
  1990年   610篇
  1989年   538篇
  1988年   482篇
  1987年   599篇
  1986年   488篇
  1985年   603篇
  1984年   694篇
  1983年   621篇
  1982年   618篇
  1981年   574篇
  1980年   570篇
  1979年   511篇
  1978年   482篇
  1977年   470篇
  1976年   428篇
  1975年   416篇
  1974年   423篇
  1973年   483篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
241.
Technique for Controlling Spread of Limnotic Oncomelania   总被引:1,自引:0,他引:1  
Schistosomiasis is a parasitic disease mostly found in areas along the Changjiang River of China. The disease is spread solely through an intermediary named oncomelania, so its spread of schistosomiasis can be controlled by properly designing water intakes which prevent oncomelania from entering farming land or residential areas. This paper reports a successful design process and a new oncomelania-free intake device. The design of the new intake is based on a sound research program in which extensive experimental studies were carried out to gain knowledge of oncomelania eco-hydraulic behavior and detailed flow field information through CFD simulation.  相似文献   
242.
243.
The equilibrium of a self gravitating cylindrical polytrope with a general magnetic field and rotation has been discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
244.
A computer simulation of the sputtering of lunar soil by solar wind protons was performed with the TRIM program. The rate of the sputtering-induced erosion of regolith particles was shown to be less than 0.2 Å per year. A preferential sputtering of Ca, Mg, and O was found along with a less intense sputtering of Fe, Si, and Ti. However, with no other selection mechanisms, surface concentrations of the atoms would differ from the volume ones by no more than 6 %. The enrichment of rims of regolith particles with iron occurs as a result of selective removal of lighter atoms from the lunar surface because of different energies of escape from the Moon's gravity. The energy distributions proved to be the same for all sorts of the sputtered atoms, except for implanted hydrogen; thus, a greater fraction of the atoms left on the lunar surface corresponds to heavier elements. According to simulation results, the concentration of reduced iron observed in the mature regolith could be attained during the time of regolith particle exposure to the present flux of solar wind (105 years). Thus, sputtering can provide the concentration of Fe0 observed in regolith. On periphery of a cloud of impact vapor the temperature is too low for an irreversible selective removal of evaporation products; thus, a meteoritic bombardment contributes to the formation of composition of the rims of regolith particles mainly through enrichment of the rims with elements from the bulk of the particles. The estimates of fluxes of backscattered solar wind protons and of sputtered protons, earlier implanted to the regolith, demonstrated that their contribution to the proton flux near the poles is only 104 cm–2 s–1. This is by two orders of magnitude smaller than the proton flux from the Earth's magnetosphere which is, therefore, the main source of protons for permanently shaded polar craters of the Moon.  相似文献   
245.
Woody, subalpine shrubs and grasses currently surround Lake Rutundu, Mount Kenya. Multiple proxies, including carbon isotopes, pollen and grass cuticles, from a 755‐cm‐long core were used to reconstruct the vegetation over the past 38 300 calendar years. Stable carbon‐isotope ratios of total organic carbon and terrestrial biomarkers from the lake sediments imply that the proportion of terrestrial plants using the C4 photosynthetic pathway was greater during the Late Pleistocene than in the Holocene. Pollen data show that grasses were a major constituent of the vegetation throughout the Late Pleistocene and Holocene. The proportion of grass pollen relative to the pollen from other plants was greatest at the last glacial maximum (LGM). Grass cuticles confirm evidence that C4 grass taxa were present at the LGM and that the majority followed the cold‐tolerant NADP‐MEC4 subpathway. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
246.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
247.
248.
We present observations of a sample of Herbig AeBe stars, as well as the FU Orionis object V1057 Cygni. Our K-band (2.2μm) observations from the Palomar Testbed Interferometer (PTI) used baselines of 110 m and 85 m, resulting in fringe spacings of ∼4 mas and 5 mas, respectively. Fringes were obtained for the first time on V1057 Cygnias well as V594 Cas. Additional measurements were made of MWC147, while upper limits to visibility-squared are obtained for MWC297, HD190073, and MWC614. These measurements are sensitive to the distribution of warm, circumstellar dust in these sources. If the circumstellar infrared emission comes from warm dust in a disk, the inclination of the disk to the line of sight implies that the observed interferometric visibilities should depend upon hour angle. Surprisingly, the observations of Millan-Gabet, Schloerb and Traub (2001)(hereafter MST) did not show significant variation with hour angle. However, limited sampling of angular frequencies on the sky was possible with the IOTA interferometer, motivating us to study a subset of their objects to further constrain these systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
249.
250.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号