首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   5篇
  国内免费   7篇
测绘学   6篇
大气科学   21篇
地球物理   37篇
地质学   49篇
海洋学   49篇
天文学   11篇
综合类   5篇
自然地理   4篇
  2022年   1篇
  2021年   2篇
  2020年   8篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   5篇
  2014年   14篇
  2013年   19篇
  2012年   10篇
  2011年   9篇
  2010年   13篇
  2009年   8篇
  2008年   10篇
  2007年   13篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1986年   2篇
  1971年   1篇
排序方式: 共有182条查询结果,搜索用时 78 毫秒
101.
Results from computational morphodynamics modeling of coupled flow–bed–sediment systems are described for 10 applications as a review of recent advances in the field. Each of these applications is drawn from solvers included in the public-domain International River Interface Cooperative (iRIC) software package. For mesoscale river features such as bars, predictions of alternate and higher mode river bars are shown for flows with equilibrium sediment supply and for a single case of oversupplied sediment. For microscale bed features such as bedforms, computational results are shown for the development and evolution of two-dimensional bedforms using a simple closure-based two-dimensional model, for two- and three-dimensional ripples and dunes using a three-dimensional large-eddy simulation flow model coupled to a physics-based particle transport model, and for the development of bed streaks using a three-dimensional unsteady Reynolds-averaged Navier–Stokes solver with a simple sediment-transport treatment. Finally, macroscale or channel evolution treatments are used to examine the temporal development of meandering channels, a failure model for cantilevered banks, the effect of bank vegetation on channel width, the development of channel networks in tidal systems, and the evolution of bedrock channels. In all examples, computational morphodynamics results from iRIC solvers compare well to observations of natural bed morphology. For each of the three scales investigated here, brief suggestions for future work and potential research directions are offered. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd  相似文献   
102.
The high nutrient concentration associated with the mixing dynamics of two warm and cold water masses supports high primary production in the Yellow Sea. Although various environmental changes have been reported, no recent information on small phytoplankton contribution to the total primary production as an important indicator for marine ecosystem changes is currently available in the Yellow Sea. The major objective of this study is to determine the small (< 2 μm) phytoplankton contribution to the total primary production in the Yellow Sea during August, 2016. In this study, we found relatively lower chlorophyll a concentrations in the water column than those previously reported in the central waters of the Yellow Sea. Moreover, the overall contribution of small phytoplankton (53.1%) to the total chlorophyll a concentration was considerably higher in this study than that (10.7%) observed previously. Based on the N/P ratio (67.6 ± 36.6) observed in this study, which is significantly higher than the Redfield ratio (16), we believe that phytoplankton experienced P-limiting conditions during the study period. The average daily carbon uptake rate of total phytoplankton in this study was 291.1 mg C m-2 d-1 (± 165.0 mg C m-2 d-1) and the rate of small phytoplankton was 205.7 mg C m-2 d-1 (± 116.0 mg C m-2 d-1) which is 71.9% (± 8.8%) of the total daily carbon uptake rate. This contribution of small phytoplankton observed in this study appears to be higher than that reported previously. Our recent measured primary production is approximately 50% lower than the previous values decades ago. The higher contributions of small phytoplankton to the total chlorophyll a concentration and primary production might be caused by P-limited conditions and this resulted in lower chlorophyll a concentration and total primary production in this study compared to previous studies.  相似文献   
103.
由多震相走时和波形作三维地震成像   总被引:1,自引:1,他引:0  
本项成果包括:提出天然地震走时反演层析成像技术,采用下列方法使得处理结果得以改善:1)利用32个地震,404条射线的Pg,Sg,Pm,Sm,Pn,Sn等震相增加约束条件:2)用已有精度较高的人工地震测深化结果作速度约束;3)用波形反演来修改模型,把波源,介质吸收,散射等物理特征集中反映在记录中,把诸多物理量开发出来互为约束,以修改后的模型再作反演,使解的稳定性大大提高;4)采用最优化过程,选择遗传  相似文献   
104.
We present MLD variability over the North Pacific Ocean in a global ocean general circulation model and impacts of three different vertical mixing schemes on it, based on statistical measures (annual mean difference, root-mean-square difference and correlation coefficient). The constant vertical mixing scheme tends to underestimate MLD over the whole basin. The Pacanowski-Philander scheme tends to overestimate MLD (> 20 m) in the mid- to high latitude during summer, implying that vertical mixing in the mid- to high latitude may not be represented properly by simple internal mixing mechanisms such as stratification or vertical shear of horizontal velocity. On the other hand, the new vertical mixing scheme (Noh et al. 2002) gives the most consistent MLD and its seasonal and spatial variability when compared with observation. These results suggest that parameterization of vertical mixing has significant effects on simulation of the seasonal and spatial variability of MLD over the North Pacific Ocean.  相似文献   
105.
The depositional characters of densely dated turbidite successions originating from the southwestern margin of the Ulleung Basin reveal changes in high-resolution frequency, failing areas, and relative volumes of slope failures over the past 29.4 cal. ka. Between 29.4 and 19.1 cal. ka B.P., various thin- to very thick-bedded turbidites accumulated at an average recurrence interval of ca. 605 years. After 19.1 cal. ka B.P., turbidites were deposited with an average recurrence interval of 3,183 years, and their thickness abruptly decreased upward. These features suggest that various-scale slope failures occurred frequently during the eustatic lowering of sea level, and the frequency and relative volumes of slope failures suddenly decreased after sea level began to rise. When sea level was lowest (20.0–19.1 cal. ka B.P.), successive stacks of very thick turbidites can most likely be ascribed to larger-volume mass failures. An upward change from muddy to sandy turbidites around 21.4 cal. ka B.P. suggests that the failing areas retrograded from the muddy upper-middle slope to the sandy uppermost slope when sea level was nearly at its lowest. Based on these findings together with published evidence, frequent mass failures between 29.4 and 19.1 cal. ka B.P. were plausibly triggered by earthquakes, in combination with reduced hydrostatic pressure that promoted gas-hydrate dissolution during the eustatic lowering of sea level. These data on the frequency, scale, failing areas, and triggering causes of slope failures along the southwestern margin over the past 29.4 cal. ka, not documented in earlier studies, provide invaluable information to better understand the basin-scale characters and occurrences of latest Quaternary slope failures in the Ulleung Basin.  相似文献   
106.
Grazing impacts of calanoid copepods on size-fractionated phytoplankton biomass [chlorophyll (Chl)-a] were measured in Jangmok Bay, Geoje Island, Korea, monthly from November 2004 to October 2005. The ingestion rate of calanoid copepods on total phytoplankton biomass ranged between 1 and 215 ng Chl-a copepod?1 day?1 during bottle incubations. Results indicated that microphytoplankton (> 20 μm) was the primary food source for calanoid copepods in grazing experiments on 3 phytoplankton size categories (< 3 μm, 3–20 μm, and > 20 μm). The ingestion rate on microphytoplankton showed a significant increase (r = 0.93, p < 0.01) with Chl-a concentration. Nanophytoplankton (3–20 μm) showed a negative ingestion rate from June 2005 to October 2005, but the reason is not completely understood. Calanoid copepods were unable to feed efficiently on picophytoplankton (< 3 μm) due to unfavorable size. Calanoid copepods removed between 0.1% and 27.7% (average, 3.6 ± 15.8%) of the phytoplankton biomass daily during grazing experiments. Grazing pressure was high in winter and early spring (January–March: 15.6–27.7%), while low in summer (June–August: ?33.1–0.0%) and autumn (September–November: ?1.4–5.1%). Results suggest that calanoid copepods play an important role in controlling the biomass and size structure of phytoplankton in winter and early spring.  相似文献   
107.
The effects of the El Ni?o-Southern Oscillation (ENSO) phase and the shifting of the ENSO sea surface temperature (SST) on the intensity of tropical cyclones (TC) have been extensively investigated in terms of TC genesis locations in the western North Pacific (WNP). To advance the hypothesis for a relation of genesis location–intensity that the TC formation location hints its intensity, two cases have been compared, which include the phase of the decaying El Ni?o turning over to La Ni?a (type I) and the phase that recovers to a neutral condition (type II). In addition, the shift of ENSO SST to the central Pacific warming (CPW) from the East Pacific warming (EPW) has been examined. The genesis potential index (GPI) and the accumulated cyclone energy have been applied to compare the differences between the ENSO phase and the TC formation location. It was apparent that ENSO influences the WNP typhoon formation location depending on the cycle of the ENSO phase. In addition, the typhoon activity was affected by the zonal shift of the El Ni?o SST. The CPW, which has maximum SST over the central Pacific, tends to have a persistently high GPI over the WNP in September–November and June–August, demonstrating that the formation locations of strong TCs significantly shift southeastward compared with the EPW having SST maximum over the eastern Pacific. CPW years revealed a distinguishable relationship between the TC formation location and the TC between the tropical depression (TD) + tropical storm (TS) and the intense typhoon of category 4?+?5.  相似文献   
108.
Recent extensive studies have suggested that the occurrence of warm-pool El Niño has increased since the late 1970s and will increase in future climate. Occurrence frequencies of cold-tongue and warm-pool El Niño have been investigated in the observational record (1980–2006) and in the future 50 years (2007–2056) based on 100 synthetic SST datasets with estimates of statistical confidence. In the observational record, 80% of the warm-pool El Niño occurred since 1980 over a period of 27 years; only 20% of the warm-pool El Niño occurred prior to 1980 over a period of 110 years. The 100 synthetic datasets, on average, produce 142 months of cold-tongue El Niño in 2007–2056 as opposed to an average 107 months in the same length of the observational data; this is a 20.7% increase in the occurrence of cold-tongue El Niño compared with the observational period. Warm-pool El Niño occurred for 112 months in 2007–2056 as opposed to an average occurrence of 42 months in the observational record; this is 2.5 times the occurrence frequency in the 1980–2006 period in the synthetic datasets. As a result, occurrence frequencies of cold-tongue and warm-pool El Niño in the period of 2007–2056 become quite comparable to each other in the synthetic datasets. It is expected in the next 50 years that warm-pool El Niño will be nearly as frequent as cold-tongue El Niño.  相似文献   
109.
The gas-particle partitioning of select semivolatile organic compounds (SOCs) was studied by injecting the SOCs into a 190 m3 Teflon film chamber containing a secondary organic aerosol (SOA) generated by volatilizing liquid -pinene into an ozone-concentrated atmosphere. The concentration of total suspended particulates (TSP) and gas and particle-phase SOCs was measured over the course of three experiments spanning a temperature range of 268–297 K and a relative humidity range of 55–100%. An equilibrium partition coefficient, Kp, was calculated for each sampling event. Empirical relationships were then developed to predict the partitioning of the SOCs on the SOA particle source as a function of temperature. Partitioning in this SOA system was compared to that of a SOA generated by the photochemical reaction of NOx with m-xylene. The results indicate that partitioning is similar between the two SOA systems. The effects of multiple particle sources on partitioning was also examined, revealing that a weighted average of predicted Kp values for individual sources can be used to predict partitioning in aerosol mixtures.  相似文献   
110.
In this study, we examine the deterministic predictability of heavy rainfall over the Korean peninsula using a global model, the Global/Regional Integrated Model system, by focusing on the effects of horizontal resolution and lead time prior to the onset of the target event. The control run reproduces locally concentrated heavy rainfall over the mid-western part of the Korean peninsula on 27–29 July 2011, with a model setup of about 25 km grid spacing and 24 h in advance of the onset of heavy rainfall. We found that small-scale features are represented well at higher resolution, but without significant change in the distribution of rainfall. Increase of lead time reduces the predictability of large-scale features, accompanying a northward shift of major rainfall. At lower resolution, the accuracy of the heavy rainfall prediction decreases more rapidly as lead time increases. We concluded that the increase in predictability of heavy rainfall achieved by enhancing horizontal resolution is promising, but an additional set of experiments also indicates that efforts should be made to improve the physics packages in models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号