首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   27篇
  国内免费   25篇
测绘学   14篇
大气科学   118篇
地球物理   202篇
地质学   252篇
海洋学   247篇
天文学   39篇
综合类   14篇
自然地理   23篇
  2023年   3篇
  2022年   9篇
  2021年   23篇
  2020年   14篇
  2019年   17篇
  2018年   45篇
  2017年   46篇
  2016年   73篇
  2015年   50篇
  2014年   52篇
  2013年   63篇
  2012年   53篇
  2011年   70篇
  2010年   65篇
  2009年   50篇
  2008年   39篇
  2007年   38篇
  2006年   34篇
  2005年   34篇
  2004年   21篇
  2003年   29篇
  2002年   15篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   8篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有909条查询结果,搜索用时 46 毫秒
491.
This paper examines the current procedure for determining the soil-water characteristic curve (SWCC) model with a particular focus on its application to slope stability analysis under transient unsaturated seepage conditions. A series of laboratory experiments was performed to determine the SWCC of different soils, ranging from high plasticity clay to silty sand, found across the Korean Peninsula. The experimental results were utilized to identify the suitable SWCC model for each soil type based on the fitting criterion. Also, this paper developed a numerical framework for infinite slope stability analysis under transient unsaturated seepage conditions. The significant advantage of the proposed framework, from the practical viewpoint, is to directly predict the timing of failure and potential failure plane based on rainfall recording. The effect of choice of SWCC models on predictability in stability analysis was evaluated by adopting the present framework along with the identified SWCC models. Furthermore, a case study of landslides after a 3-month rainfall in Pohang, Korea, was revisited to assess the performance of the proposed framework. The obtained results demonstrate the significant role of SWCC model on the results of slope stability analysis. The analysis using the SWCC model satisfying the fitting criterion could still not capture the real behavior of unsaturated soil. The comprehensive transient analysis is strongly suggested as a complementary means to the current fitting criterion for determining the suitable SWCC model for stability analysis under transient seepage conditions.  相似文献   
492.
The characteristics of the Mocoa compound disaster event,Colombia   总被引:1,自引:0,他引:1  
A rainfall-induced compound disaster happened in Mocoa in the pre-dawn hours of 1 April 2017. More than 300 people were killed, and a large number of houses and roads were destroyed in the worst catastrophe in the history of Mocoa. To investigate this disaster, a detailed interpretation was carried out using high-resolution images. Analysis of disaster characteristics based on satellite image revealed that the disaster could be identified as a consequence of compound mountain hazards including landslides, debris flows, and mountain torrents. The mountain hazards converged in the mountain watershed, which amplified the disaster’s effects. Analysis considers that this disaster is the result of heavy rainfalls. Moreover, in-depth interpretation of rainfall data and satellite images spanning over 16 years reveals that the previous El Niño event (2014–2016) also played an important role, which caused reduced rainfall and vegetation coverage. The long period of drought brought by El Niño affected the growth of vegetation and reduced the ability of vegetation to cope with heavy rainfalls. The results reveal that both antecedent rainfalls and climate impact need to be taken into consideration for mountain hazard analysis.  相似文献   
493.
494.
The conventional approach in the design of laterally loaded piles with rectangular cross section involves the simplification of converting the rectangular cross section of the pile to an equivalent circular cross section. An analysis to determine the response of laterally loaded rectangular or circular piles in elastic soil is presented in which this simplification is not required. The analysis is based on the solution of differential equations governing the displacements of the pile–soil system derived using energy principles. The pile geometry and the elastic constants of the soil and pile are the input parameters to the analysis. Using this analysis, comparisons are made between the response of rectangular and circular piles in elastic soil. Based on the proposed solution scheme, a user-friendly spreadsheet program (LATPAXL) was developed that can be used to perform the analysis. In addition, simple equations obtained by regression analysis of the pile head deflection and bending moment profiles are proposed. Examples illustrate the use of the analysis.  相似文献   
495.
Because total UV(TUV) in the UV-A region is 100 times higher than in the UV-B region,UV-A is a considerable component when calculating erythemal UV(EUV) and UV-index.The ratio of EUV to TUV in the UV-A value [EUV(A)/TUV(A)]is investigated to convert the EUV(A) from TUV(A) for broadband observation. The representative value of EUV(A)/TUV(A),from the simulation study,is 6.9 × 10-4,changing from 6.1 × 10-4to 7.0 × 10-4as aerosol optical depth,total ozone and solar zenith angle change. By adopting the observational data of EUV(B) and TUV(A) from UV-biometer measurements at Yonsei University [(37.57?N,126.95?E),84 m above sea level],the EUV irradiance increases to 15% of EUV(B) due to the consideration of EUV(A) from the data of TUV(A) observation. Compared to the total EUV observed from the Brewer spectrophotometer at the same site,the EUV(B) from the UV-biometer observes only 95% of total EUV,and its underestimation is caused by neglecting the effect of UV-A. However,the sum of EUV(B) and EUV(A) [EUV(A+B)] from two UV-biometers is 10% larger than the EUV from the Brewer spectrophotometer because of the spectral overlap effect in the range 320–340nm. The correction factor for the overlap effect adjusts 8% of total EUV.  相似文献   
496.
497.
Astronomy Reports - The paper presents the results of experiments for studying the dynamics and internal structure of an axial plasma jet at the PF-3 facility. Measurements of the azimuthal...  相似文献   
498.
Ng  C. W. W.  Majeed  U.  Choi  C. E.  De Silva  W. A. R. K. 《Landslides》2021,18(6):2309-2321
Landslides - In the design of multiple rigid barriers, the height of the first barrier governs the impact dynamics of debris flow on the next barrier in a channel. However, current design...  相似文献   
499.
Song  Dongri  Bai  Yitong  Chen  Xiao Qing  Zhou  Gordon G. D.  Choi  Clarence E.  Pasuto  Alessandro  Peng  Peng 《Landslides》2022,19(5):1165-1177

Debris-flow impact load is one of the key parameters for design of engineering countermeasures. The multiple-surge load model is a remarkable progress in estimating the debris-flow impact load, which clearly delineates the contribution of each surge to the total impact load and the corresponding acting points. In order to better understand the impact process of channelized debris flow against flexible barrier, a series of medium-scale flume experiments with varying debris-flow volumetric solid concentration (0.40/0.50/0.55) were conducted. Especially, surge impact behavior is focused so that the predictability of the multiple-surge load model could be assessed. The flume and model flexible barrier were instrumented so that both the barrier dynamic response and the debris-flow properties (flow regime) could be correlated to facilitate the assessment. The results show that multiple-surge load model well predicts the total impact load. However, due to the simplification in the impact process, the interaction between the mobile phase (surge) and the deposited phase is ignored, resulting in discrepancy in the load distribution between the model prediction and experimental result. The remixing of deposited debris by the subsequent surges leads to downward momentum transfer to the lower section of barrier, which should be regarded as an adverse scenario of the design of flexible-barrier anchor capacity.

  相似文献   
500.
Understanding the interaction between complex geophysical flows and barriers remains a critical challenge for protecting infrastructure in mountainous regions. The scientific challenge lies in understanding how grain stresses in complex geophysical flows become manifested in the dynamic response of a rigid barrier. A series of physical flume tests were conducted to investigate the influence of varying the particle diameter of mono-dispersed flows on the impact kinematics of a model rigid barrier. Particle sizes of 3, 10, 23 and 38 mm were investigated. Physical tests results were then used to calibrate a discrete element model for carrying out numerical back-analyses. Results reveal that aside from considering bulk characteristics of the flow, such as the average velocity and bulk density, the impact load strongly depends on the particle size. The particle size influences the degree of grain inertial stresses which become manifested as sharp impulses in the dynamic response of a rigid barrier. Impact models that only consider a single impulse using the equation of elastic collision warrant caution as a cluster of coarse grains induce numerous impulses that can exceed current design recommendations by several orders of magnitude. Although these impulses are transient, they may induce local strucutral damage. Furthermore, the equation of elastic collision should be adopted when the normalized particle size with the flow depth, δ/h, is larger than 0.9 for Froude numbers less than 3.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号