首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   10篇
测绘学   4篇
大气科学   35篇
地球物理   82篇
地质学   71篇
海洋学   32篇
天文学   28篇
综合类   1篇
自然地理   14篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   8篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   11篇
  2009年   15篇
  2008年   8篇
  2007年   9篇
  2006年   17篇
  2005年   13篇
  2004年   9篇
  2003年   13篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   5篇
  1984年   2篇
  1983年   10篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1973年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1962年   1篇
  1900年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
111.
Located on the extensive continental shelf of the Bering Sea, the Pribilof Islands, Alaska are the site of one of the largest breeding colonies of seabirds in the northern hemisphere. During summer these islands are surrounded by a front that separates vertically homogeneous waters from well stratified waters farther seaward. We studied the front with hydrographic data and the bird distributions with concurrent counts during summer 1977 and spring, summer and fall 1978. Murres (Uria lomvia and U. aalge) sitting on the water aggregated near the front during summer 1977 and probably during summer 1978. Other species, such as northern fulmars (Fulmarus glacialis) and auklets (Aethia pusilla and A. cristatella) were unaffected by the front. We hypothesize that the aggregation of the murres was related to an enhanced availability of their food near the front.  相似文献   
112.
The current state of modeling   总被引:1,自引:0,他引:1  
Hunt RJ  Zheng C 《Ground water》2012,50(3):330-333
  相似文献   
113.
Regions with Mediterranean climates are seasonally arid and provide a niche for ephemeral species which germinate following discrete and variable rainfall during summer. These species must be able to detect when conditions are suitable for completion of their life cycle. Common heliotrope (Heliotropium europaeum) is one such species. It is considered a weed in its naturalised habitat in southern Australia as it uses resources that could be used by ensuing crops, and is toxic to livestock.We examined common heliotrope's germination responses to temperature and water potential, the effect of simulated rainfall on seedling emergence and plant growth in lysimeters.Fresh seeds of common heliotrope have relatively high optimum temperatures and water potentials for germination (around 35 °C and 0 MPa). Germination percentage of seeds extracted from the soil seed bank varies seasonally. In the soil types and climate of the study area, 24.2 mm is the minimum amount of rainfall resulting in emergence. Evapotranspiration required to reach minimal reproductive output was 19.4 mm.Common heliotrope's germination requirements have been selected to ensure that it will only germinate after sufficient rainfall to allow reproductive output. This is the mechanism through which common heliotrope detects its temporal niche.  相似文献   
114.
Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate “virtual” computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.  相似文献   
115.
We propose a new hypothesis, the Oscillating Control Hypothesis (OCH), which predicts that pelagic ecosystem function in the southeastern Bering Sea will alternate between primarily bottom-up control in cold regimes and primarily top-down control in warm regimes. The timing of spring primary production is determined predominately by the timing of ice retreat. Late ice retreat (late March or later) leads to an early, ice-associated bloom in cold water (e.g., 1995, 1997, 1999), whereas no ice, or early ice retreat before mid-March, leads to an open-water bloom in May or June in warm water (e.g., 1996, 1998, 2000). Zooplankton populations are not closely coupled to the spring bloom, but are sensitive to water temperature. In years when the spring bloom occurs in cold water, low temperatures limit the production of zooplankton, the survival of larval/juvenile fish, and their recruitment into the populations of species of large piscivorous fish, such as walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias). When continued over decadal scales, this will lead to bottom-up limitation and a decreased biomass of piscivorous fish. Alternatively, in periods when the bloom occurs in warm water, zooplankton populations should grow rapidly, providing plentiful prey for larval and juvenile fish. Abundant zooplankton will support strong recruitment of fish and will lead to abundant predatory fish that control forage fish, including, in the case of pollock, their own juveniles. Piscivorous marine birds and pinnipeds may achieve higher production of young and survival in cold regimes, when there is less competition from large piscivorous fish for cold-water forage fish such as capelin (Mallotus villosus). Piscivorous seabirds and pinnipeds also may be expected to have high productivity in periods of transition from cold regimes to warm regimes, when young of large predatory species of fish are numerous enough to provide forage. The OCH predicts that the ability of large predatory fish populations to sustain fishing pressure will vary between warm and cold regimes.The OCH points to the importance of the timing of ice retreat and water temperatures during the spring bloom for the productivity of zooplankton, and the degree and direction of coupling between zooplankton and forage fish. Forage fish (e.g., juvenile pollock, capelin, Pacific herring [Clupea pallasii]) are key prey for adult pollock and other apex predators. In the southeastern Bering Sea, important changes in the biota since the mid-1970s include a marked increase in the biomass of large piscivorous fish and a concurrent decline in the biomass of forage fish, including age-1 walleye pollock, particularly over the southern portion of the shelf. Populations of northern fur seals (Callorhinus ursinus) and seabirds such as kittiwakes (Rissa spp.) at the Pribilof Islands have declined, most probably in response to a diminished prey base. The available evidence suggests that these changes are unlikely the result of a decrease in total annual new primary production, though the possibility of reduced post-bloom production during summer remains. An ecosystem approach to management of the Bering Sea and its fisheries is of great importance if all of the ecosystem components valued by society are to thrive. Cognizance of how climate regimes may alter relationships within this ecosystem will facilitate reaching that goal.  相似文献   
116.
Sediment contamination and toxicity were monitored at 14 sites in San Francisco Bay between 1991 and 1996. Sediment contamination patterns were different in the major reaches of the Bay, and at each site. Several contaminants were consistently above concentrations previously associated with toxicity at most sites. Bulk sediment bioassays using the amphipod Eohaustorius estuarius and sediment elutriate bioassays using larval bivalves (Mytilus spp., Crassostrea gigas) also indicated different patterns of sediment toxicity in space and time. Sediments were most toxic to the amphipods at Redwood Creek (90% of the tests), and were toxic in at least half the tests conducted at five other sites. Sediment elutriates severely reduced normal bivalve larval development at the San Joaquin and Sacramento Rivers in all samples, but toxicity occurred in less than a third of the tests in the Central and South Bays. Toxicity could not be statistically related to seasonal freshwater flow or rainfall in the Bay, but seasonal variation in contaminant concentrations and toxicity was observed. Amphipod toxicity was inversely and significantly related to the mean effects range-median quotient, suggesting that cumulative concentrations of several contaminants were related to toxicity. Further analysis identified suites of specific contaminants at each site that were variably related to amphipod toxicity at each site. Chlordanes, cadmium, and silver were significantly related to amphipod survival in the North Bay. Seasonal patterns in low, and high molecular weight polycyclic aromatic hydrocarbons (PAHs) were related to toxicity at Alameda, and metals and PAHs were related to toxicity at Castro Cove. Larval bivalve toxicity was associated with metals in bulk sediments, but elutriate chemistry was not measured, and relationships with toxicity could not be examined. Hypotheses about effective concentrations of several individual contaminants and mixtures of contaminants were posed.  相似文献   
117.
Petroleum source-rock evaluations by pyrolysis are based on the concept that free hydrocarbons in rock samples are volatilized below 300°C while hydrocarbons cracked from kerogen come off at higher temperatures. The pyrolysis of pure hydrocarbons with different mineral matrices shows that free hydrocarbons containing 16 or more carbon atoms may not be evolved eblow 300°C, but at varying higher temperatures. The extent to which this occurs depends on the hydrocarbon volatility, the mineral matrix and the pyrolysis instrument design. Source-rock parameters which use the P1 (S1) peak may be not be reproducible between instruments if the rock contains appreciable amounts of high molecular weight hydrocarbons.  相似文献   
118.
119.
120.
As part of the international MENU collaboration, we compared and contrasted ecosystem responses to climate-forced oceanographic variability across several high latitude regions of the North Pacific (Eastern Bering Sea (EBS) and Gulf of Alaska (GOA)) and North Atlantic Oceans (Gulf of Maine/Georges Bank (GOM/GB) and the Norwegian/Barents Seas (NOR/BAR)). Differences in the nitrate content of deep source waters and incoming solar radiation largely explain differences in average primary productivity among these ecosystems. We compared trends in productivity and abundance at various trophic levels and their relationships with sea-surface temperature. Annual net primary production generally increases with annual mean sea-surface temperature between systems and within the EBS, BAR, and GOM/GB. Zooplankton biomass appears to be controlled by both top-down (predation by fish) and bottom-up forcing (advection, SST) in the BAR and NOR regions. In contrast, zooplankton in the GOM/GB region showed no evidence of top-down forcing but appeared to control production of major fish populations through bottom-up processes that are independent of temperature variability. Recruitment of several fish stocks is significantly and positively correlated with temperature in the EBS and BAR, but cod and pollock recruitment in the EBS has been negatively correlated with temperature since the 1977 shift to generally warmer conditions. In each of the ecosystems, fish species showed a general poleward movement in response to warming. In addition, the distribution of groundfish in the EBS has shown a more complex, non-linear response to warming resulting from internal community dynamics. Responses to recent warming differ across systems and appear to be more direct and more pronounced in the higher latitude systems where food webs and trophic interactions are simpler and where both zooplankton and fish species are often limited by cold temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号